NPS ARCHIVE 1967 MARSHALL, B.

EFFECT OF SLATOR BLADE ORIENTATION ON THE PERFORMANCE OF AN AXIAL FLOW COMPRESSOR

BRUCE CAMERON MARSHALL

LIBRARY NAVAL POSTGRADUATE SCHOOL . NONTEREY, CALIF 959-00

EFFECT OF STATOR BLADE ORIENTATION

ON THE PERFORMANCE OF AN AXIAL FLOW COMPRESSOR

by

Bruce Cameron Marshall Lieutenant, United States Navy B. Ch. E., Cornell University, 1959

Submitted in partial fulfillment of the requirements for the degree of

AERONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL September 1967

ABSTRACT

SARCHIVE Thesis At 3555 C.1

ARSHALL, K.

A mean streamline analysis of the effect of stator blade orientation on the performance of an axial flow compressor was performed by means of a computer program. Measurements were made on a 3-stage axial flow compressor at the Naval Postgraduate School at six stator stagger angles between 23.8° and 44.3° for a fixed orientation of the rotor blades. Maximum efficiency and pressure ratio were measured at a stator stagger angle of 31.8° . Results at other blade settings showed that by varying stator stagger angle with flow rate optimum efficiencies and pressure ratios can be achieved over a wide range of operating conditions.

The results of the analysis were compared with the measured results. Suggestions are made for improving the manner of adapting cascade test data to performance predictions.

By applying a non-dimensional deflection coefficient it could be shown that minimum work input corresponded to maximum efficiency.

The test compressor has a tip diameter of 36 in. and a hub/tip ratio of 0.6. The blading tested is of the free-vortex type with a design degree of reaction of 0.5. Tip speed was about 185 ft/sec. LIBRARY NAVAL POSTRESIS by Bruce C. Marshall entitled: "Effect of Stator Blade Orientation on MONETREY, the Performance of an Axial Flow Compressor"

ERRATA SHEET

Page	Line	Change	<u>To</u> ,
17	3	g/cm ³	dimensionless
17	5	temperatve	temperature
28	6	assessories	accessories
28	17/18	dia-meter	diam-eter
45	20/21	analy-tically	analyt-ically
59	9	delete "(g/cm ³)"	
78	Fig.15	Note 2: "DEMENSIONS"	DIMENSIONS
100	Fig.37	Maximum 3-Stage Effiency	Maximum 3-Stage Efficiency

TABLE OF CONTENTS

Section		Page
1	Introduction	21
2	O. N. R. 3-Stage Axial Flow Compressor	25
3	Flow Rate Calibration	33
4	Measurement of Compressor Performance	38
5	Performance Prediction Program	43
6	Discussion of Results	50
7	Conclusions and Recommendations	63
8	Illustrations	64
9	References	111
Appendix A	Calibration of Instruments	113
Appendix B	Flow Rate Calibration Details	122
Appendix C	Performance Measurements	135
Appendix D	Details of Prediction Program	157
Appendix E	Proposed Design of an Improved Inlet Duct	196

·

LIST OF TABLES

<u>Table</u>		Page
A-1	Calibration of BLH Torque Meter	116
A-2	Calibration of 0-12 in. Hg Bourdon Tube	118
A-3	Calibration of Inlet Pitot-Static Tube	120
B-1	Precision and Time to Damp for Various Lengths of	128
	Capillary Tube in Total and Static Pressure Lines	
B-2	Listing of Program ONRFLO	129
B-3	Sample Output of Program ONRFLO-Input for Run 14	132
B-4	Sample Output of Program ONRFLO-Velocities for Run 14	133
B-5	Sample Output of Program ONRFLO-Calibration Constant	134
	for Run 14	
C-1	Investigation of Axisymmetry of Flow	143
C-2	Listing of Program ONRETA	144
C-3	Output of Program ONRETA, Run 1, Stator Stagger	146
	Angle = 27.8°	
C-4	Output of Program ONRETA, Run 2, Stator Stagger	147
	Angle = 27.8°	
C-5	Output of Program ONRETA, Run 3, Stator Stagger	148
	Angle = 27.8°	
C-6	Output of Program ONRETA, Run 4, Stator Stagger	149
	Angle = 23.8°	
C-7	Output of Program ONRETA, Run 5, Stator Stagger	150
	Angle = 23.8°	
C-8	Output of Program ONRETA, Run 6, Stator Stagger	151
	Angle = 31.8°	

LIST OF TABLES (Cont.)

<u>Table</u>		Page
C-9	Output of Program ONRETA, Run 7, Stator Stagger	152
	Angle = 31.8°	
C-10	Output of Program ONRETA, Run 8, Stator Stagger	153
	Angle = 35.8°	
C-11	Output of Program ONRETA, Run 9, Stator Stagger	154
	Angle = 35.8°	
C-12	Output of Program ONRETA, Run 10, Stator Stagger	155
	Angle = 39.8°	
C-13	Output of Program ONRETA, Run 11, Stator Stagger	156
	Angle = 44.3°	
D-1	Listing of Program AXCO3	160
D-2	Sample Output of Program AXCO3	173
D-3	Output of Program AXCO3, Case 11, C _{Dmin} = 0.000	177
D-4	Output of Program AXCO3, Case 12, C _{Dmin} = 0.006	178
D-5	Output of Program AXCO3, Case 13, C _{Dmin} = 0.008	179
D-6	Output of Program AXCO3, Case 21, C _{Dmin} = 0.000	180
D-7	Output of Program AXCO3, Case 22, C _{Dmin} = 0.006	181
D-8	Output of Program AXCO3, Case 23, C _{Dmin} = 0.008	182
D-9	Output of Program AXCO3, Case 31, C _{Dmin} = 0.000	183
D-10	Output of Program AXCO3, Case 32, C _{Dmin} = 0.006	184
D-11	Output of Program AXCO3, Case 33, C _{Dmin} = 0.008	185
D-12	Output of Program AXCO3, Case 41, C _{Dmin} = 0.000	186
D-13	Output of Program AXCO3, Case 42, C _{Dmin} = 0.006	187
D-14	Output of Program AXCO3, Case 43, C _{Dmin} = 0.008	188

LIST OF TABLES (Cont.)

<u> Table</u>		Page
D-15	Output of Program AXCO3, Cases 51, 52, and 53,	189
	All C _{Dmin}	
D-16	Output of Program AXCO3, Cases 61, 62, and 63,	190
	All C _{Dmin}	
D-17	Program CHECK, Listing and Output	191

LIST OF ILLUSTRATIONS

Figur	e	Page
1	Compressor Installation	64
2	Accessories to Compressor	65
3	Compressor Casing	66
4	Rotor Blades, Drum and Shaft Mounted in Supporting	67
	Strut Assemblies	
5	Assembly of Rotor in Lower Casing	68
6	Compressor Sectional View	69
7	Location of Radial Survey Holes	70
8	Detail of Free-Vortex Rotor	71
9	Detail of Free-Vortex Stator	72
10	Free-Vortex Stator Blade	73
11	Rotor Stagger Angle Adjustment	74
12	External Stagger Angle Adjustment	75
13	Inlet Bellmouth	76
14	Inlet Pitot-Static Traverse	77
15	Detail of Inlet Pitot-Static Traverse	78
16	Three-Hole Probe Detail	79
17	Permanent Pitot-Static Tube	80
18	Permanent Pitot-Tube and Three-Hole Probe Ahead	81
	of First Rotor	
19	Pressure Readout Instrumentation	82
20	Pressure Selection by Scanner Valve	83
21	Simplified Pressure Selection System	84
22	Traverse Carriage and Three-Hole Probe	85
	Behind Third Stator	

LIST OF ILLUSTRATIONS (Cont.)

Figur	<u>ce</u>	Page
23	Relation of Traverse Carriage to Survey Holes	86
24	Torque Meter During Calibration	87
25	Traverse of Inlet Duct Run D-1	88
26	Traverse of Inlet Duct Run D-7	89
27	Extent of Boundary Layer in Cylindrical Inlet Duct	90
28	Temperature-Entropy Diagram of Compression Process in	91
	3-Stage Machine	
29	Assumed Performance of Blading	92
30	3-Stage Efficiency Versus Referred Flow Rate Predicted	93
	by AXCO3, Rotor Stagger Angle = 43.8° , Various Stator	
	Stagger Angles	
31	3-Stage Pressure Ratio and 3-Stage Efficiency Versus	94
	Referred Flow Rate, Stator Stagger Angle = 23.8°	
32	3-Stage Pressure Ratio and 3-Stage Efficiency Versus	95
	Referred Flow Rate, Stator Stagger Angle = 27.8°	
33	3-Stage Pressure Ratio and 3-Stage Efficiency Versus	96
	Referred Flow Rate, Stator Stagger Angle = 31.8°	
34	3-Stage Pressure Ratio and 3-Stage Efficiency Versus	97
	Referred Flow Rate, Stator Stagger Angle = 35.8°	
35	3-Stage Pressure Ratio and 3-Stage Efficiency Versus	98
	Referred Flow Rate, Stator Stagger Angle = 39.8°	
36	3-Stage Pressure Ratio and 3-Stage Efficiency Versus	99
	Referred Flow Rate, Stator Stagger Angle = 44.3°	
37	Maximum 3-Stage Efficiency Versus Referred Flow Rate	100

for Various Stator Stagger Angles

LIST OF ILLUSTRATIONS (Cont.)

Figur	<u>e</u>	Page
38	Maximum 3-Stage Pressure Ratio Versus Referred Flow	101
	Rate for Various Stator Stagger Angles	
39	3-Stage Efficiency, Deflection Coefficient and	102
	Pressure Coefficient Versus Flow Coefficient,	
	Stator Stagger Angle = 23.8°	
40	3-Stage Efficiency, Deflection Coefficient and	103
	Pressure Coefficient Versus Flow Coefficient,	
	Stator Stagger Angle = 27.8°	
41	3-Stage Efficiency, Deflection Coefficient and	104
	Pressure Coefficient Versus Flow Coefficient,	
	Stator Stagger Angle = 31.8°	
42	3-Stage Efficiency, Deflection Coefficient and	105
	Pressure Coefficient Versus Flow Coefficient,	
	Stator Stagger Angle = 35.8°	
43	3-Stage Efficiency, Deflection Coefficient and	106
	Pressure Coefficient Versus Flow Coefficient,	
	Stator Stagger Angle = 39.8 ⁰	
44	3-Stage Efficiency, Deflection Coefficient and	107
	Pressure Coefficient Versus Flow Coefficient,	
	Stator Stagger Angle = 44.3°	
45	Maximum 3-Stage Efficiency and Corresponding	108
	Deflection Coefficient and Stator Stagger	
	Angles Versus Flow Coefficient	
46	Maximum Pressure Coefficient and Corresponding Stator	109
	Stagger Angles Versus Flow Coefficient	

LIST OF ILLUSTRATIONS (Cont.)

Figur	<u>e</u>	Page
47	Off-Design Conditions of Axial Compressor Stage	110
A-1	Torque Meter Calibration	117
A-2	Bourdon Tube Calibration	119
A-3	Inlet Traverse Pitot-Static Calibration	121
B-1	Variable Length Capillary Damping Device	126
B-2	Variable Length Capillary Damping Device Operation	127
C-1	Radial Integration for Total Pressure	141
C-2	Survey of Pressure Reading in Peripheral Direction	142
E-1	Proposed Improved Inlet Duct	198

LIST OF SYMBOLS

Symbol	Meaning	Fortran	Units
ALE	air flow angle after the inlet	ALE	deg
	guide vanes		
b	number of blades in rotor or	BLDR	-
	stator row	BLDS	
с	blade chord length of rotor	CHR	in.
	or stator	CHS	
CCC	volume flow rate calibration	CCC	ft ³ /sec per ft/sec
	constant		
с _р	profile drag coefficient of	-	-
	blading		
C _{Dmin}	minimum profile drag coefficient	CDR	-
	for rotor or stator blade	CDS	
° _f	conversion factor for barometric	-	psfa/in. of Hg
	pressure		
с _р	specific heat at constant	CP	Btu/1bm, ^o R
	pressure		
d	mean diameter of blading	DD	in.
DW	referred flow rate increment,	DW	lbm√ ^o R/sec psia
	$\dot{w}\sqrt{T_{to}}/P_{A}$		
h	height of part of annulus area	-	in.
	ΔA		
L	diffuser length proposed in	-	in.
	Appendix E		
LMAX	number of stages for program	LMAX	-
	AXCO3		

<u>Symbol</u>	Meaning	Fortran	Units
m	slope factor which modifies $(\dot{\iota}_o)_{10}$	SLOPM	-
	for the camber of the blade		
	section		
n	slope factor which modifies δ_{o}	SLOPM	-
	for the camber of the blade		
	section		
N	compressor speed measured by	TACH	rpm
	electronic counter		
NCASE	run number of programs ONRFLO	NCASE	-
	and ONRETA		
NRUN	number of data points per run	NRUN	-
	of program ONRETA		
NUM	case number of program AXCO3	NUM	-
PA	atmospheric pressure	PA	psfa
PBar	barometric pressure	PBAR	in. of Hg
P _i	static pressure in inlet duct	PI	psfa
P _{r3-s}	ratio of total pressure behind	PRATS3	-
	third stator to total pressure		
	ahead of first rotor		
Po	static pressure at permanent	РО	psfa
	Pitot-static tube		
Psd	static pressure with reference	-	counts
	to atmospheric after the third		
	stator		
Psda	static pressure after the third	-	psfa
	stator		
Psi	static pressure with reference	PSI	counts
	to atmospheric in inlet duct		

Symbol	Meaning	Fortran	Units
Pso	static pressure with reference	PSO	counts
	to atmospheric at permanent		
	Pitot-static tube		
P _{td}	total pressure with reference	-	counts
	to atmospheric after the third		
	stator		
P _{tda}	total pressure after the third	-	psfa
	stator		
Ptda	average total pressure after the	-	psfa
	third stator, integrated		
	radially		
P _{tig}	total pressure with reference to	PTIG	counts
	atmospheric between the inlet		
	guide vanes and the first rotor	r	
P _{tiga}	total pressure ahead of the	PTIGA	psf
	first stage or after the inlet		
	guide vanes		
P _{Wa}	actual horsepower of compressor	-	(ft-lbf)/sec
PWth	theoretical horsepower of	-	(ft-lbf)/sec
	compressor		
^q d	velocity head after the third	-	counts
	stator		
q _{d1}	velocity head after the third	-	psf
	stator		

Symbol	Meaning	<u>Fortran</u>	<u>Units</u>
9 _i	dynamic head in inlet duct,	QI	counts
	below atmospheric		
9 _{i1}	dynamic head in inlet duct	QI1	psf
9 ₀	dynamic head of permanent	QO	counts
	Pitot-static tube, below		
	atmospheric		
q _{ol}	dynamic head of permanent	Q01	psf
	Pitot-static tube		
r	radius in program ONRFLO	R	in.
RN	referred speed of program	RN	rpm/V ^o R
	AXCO3 N/ $\sqrt{T_{to}}$		
ro	outside radius	-	in.
RSTAG	rotor stagger angle measured	STAGR	deg
	from the blade chord at the		
	mid-radius to a line parallel		
	to the axis		
s	spacing of blades M d/b	-	in.
SMAX	maximum limit $(i - i_{10}) / \epsilon_{10}$	SMAX	-
	determined from Fig. 29		
SMI	minimum limit ($\dot{\iota} - \dot{\iota}_{10}$) / ϵ_{10}	SMI	-
	determined from Fig. 29		
SSTAG	stator stagger angle measured	STAGS	deg
	from the blade chord at the		
	mid-radius to a line parallel		
	to the axis		

Symbol	Meaning	Fortran	Units
sy	specific gravity of mercury	-	g/cm ³
T _{Bar}	temperature at baromețer	TBAR	°F
т _о	static temperatue at inlet	то	°F
	screen		
T _r	reading of torque meter	TRAW	1b
T _{rq}	actual torque	TRQ	ft-1b
T _{td}	total temperature after the	-	°R
	third stator		
T'td	total temperature at the dis-	-	°R
	charge of an isentropic com-		
	pression from P _{tiga} to P _{td}		
T _{tiga}	total temperature ahead of the	-	°R
	first stage or after the inlet		
	guide vanes		
T _{to}	total temperature at inlet screen	TTO	°R
U _{av}	peripheral speed at mean radius	UAV	ft/sec
Va	axial or through flow velocity	-	ft/sec
	in compressor annulus		
v _d	velocity after the third stator	-	ft/sec
v _D	difference in inlet velocity at	VD	ft/sec
	16.0 in. radius and that mea-		
	sured in boundary layer		
v _i	velocity in the inlet duct	VI	ft/sec

Symbol	Meaning	Fortran	Units
V _{iad}	velocity in inlet duct adjusted	VIAD	ft/sec
	for slight compressor speed		
	variations		
V iav	average of four values of V iad	VA	ft/sec
	at each radius		
V _o	velocity at the permanent	vo	ft/sec
	Pitot-static probe		
Voav	average velocity at the permanent	VOAV	ft/sec
	Pitot-static probe		
V _u	peripheral component of velocity	VU	ft/sec
ve	actual volume flow rate	VFC	ft ³ /sec
₽	volume flow deficiency due to	VFD	ft ³ /sec
	losses in inlet duct boundary		
	layer		
√=t	volume flow rate neglecting	VFT	ft ³ /sec
	losses in inlet duct boundary		
	layer		
W	air velocity realtive to the	W	ft/sec
	rotating blade row		
W _u	peripheral component of relative	WU	ft/sec
	velocity		
ŵ	weight flow rate	WDOT	lbm/sec
ŵ _r	referred weight flow rate	WREM	$1bm \sqrt{O_R/sec} psize$
	$\hat{w}\sqrt{T_{to}}/P_{A}$		

Symbol	Meaning	Fortran	Units
x,	inlet angle of absolute flow	A	deg
β ₁	inlet angle of relative flow	A	deg
б	ratio of specific heat at con-	GAM	-
	stant pressure and specific		
	heat at constant volume		
δ	deviation angle of blade row	SD	deg
ΔA	part of the annulus area in the	A	ft ²
	center of which v_{iav} is measure	d	
∆his	isentropic specific enthalpy dif-	-	Btu/lbm ^o R
	ference for frictionless com-		
	pression		
ΔP _{3-S}	total pressure difference across	DELP	counts
	the three stages		
ΔP_{3-SA}	actual total pressure difference	DELTAP	psf
ΔP _{3-sth}	theoretical total pressure dif-	-	psf
	ference across the three stages		
ΔS	entropy difference	-	Btu/1bm ^O R
∆T _{t 3-S}	isentropic temperature difference	-	°R
	from T _{tiga} to T ⁺ td		
E	actual deflection for blade row	DFACT	deg
e,o	nominal deflection for blade row	DFSTAR	deg
	at incidence for minimum profile		
	drag loss		
N 3-5	three stage total-to-total	ETAST3	-

Symbol	Meaning	Fortran	Unit
i	actual incidence angle of	SI	deg
	blade row		
i,0	nominal incidence of blade row	STARI	deg
	for minimum profile drag loss		
11	geometrical constant 3.14159	-	-
Pd	air density after the third	-	lb sec ² /ft ⁴
	stator		
Pi	air density at the inlet	RHOI	lb sec ² /ft ⁴
90	air density at the permanent	-	lb sec ² /ft ⁴
	Pitot-static probe		
σ	blading solidity	SO	-
ĩav	average dimensionless deflection	TAUAV	-
	coefficient		
φ _{av}	flow coefficient, ratio of	PHIVA	-
	through flow velocity to		
	peripheral speed		
Yav	average dimensionless pressure	PSIAV	-
	coefficient		
ω	angular velocity	OMEG	rad/sec

SECTION 1

INTRODUCTION

Axial flow compressors have a wide range of application. They are usually matched to a turbine in a set. Both open-cycle sets, such as aircraft turbo-jet engines, and closed-cycle sets for power generation are in service. In every application compressor efficiency is the critical factor in set performance. Accurate predictions of off-design compressor performance must be made during the design stage to be able to make corrections prior to manufacturing.

Theoretical analysis of the flow in an axial compressor involves three-dimensional partial differential equations of a complex nature (1). In these equations it is difficult to account for real gas effects such as boundary layer growth on machine walls and blade surfaces. The resulting wakes behind blade rows create non-uniform conditions; hence, it becomes necessary to base prediction methods on experimental data.

These data would be obtained best on an actual compressor. However, most compressors have relatively short blades and small flow annuli. Even if only small pressure probes were inserted between the rows of blades, the flow in these machines would be substantially altered. Test rigs must therefore be used that have large dimensions.

A first approximation of the flow in axial turbomachines can be obtained in rectilinear cascade test rigs. The intersections of a co-axial cylinder with the blades of a row produce a series of identical and identically oriented profiles which are unwrapped into a plane to establish the corresponding rectilinear cascade. A finite number of straight blades with profiles similar to, but larger than

those obtained, is then arranged in a rectangular duct through which air is blown at the appropriate inflow angle. Flow surveys taken ahead of and behind the blade row give experimental data of air turning angle and total pressure loss for various blade geometries. Such a rectilinear cascade is in use at the Naval Postgraduate School. The results of extensive testing of compressor airfoil shapes at NASA have been summarized by Lieblein (2).

The usual problem in compressor design consists in selecting flow areas, blade shapes and blade layout to satisfy design specifications. Additional studies are frequently necessary if the design performance is not reached. An example is the study of Vavra which was made when the so-called Clark CSN-1 compressor of the ML-1 nuclear gas turbine of Aerojet-General Nucleonics failed to perform as required. Vavra analyzed the design changes proposed by the manufacturers and made further recommendations (3). However the ML-1 project was cancelled before the improved compressor could be built so that it was not possible to verify the suggested changes by experiments.

The so-called inverse problem consists in predicting the performance of an existing machine with a known blading by means of rectilinear cascade data and other experience factors. Such an approach was carried out by Gibbons and Bartels (4) for the 12-stage Allis-Chalmers axial flow compressor which supplies air to the turbine test facilities at the Naval Postgraduate School. Because of the unorthodox performance of the first stages, and also due to small flow annuli and short blade heights, it was not possible to predict the performance of the machine accurately. However, the analysis gave important indications for design changes to improve the performance of the compressor.

This thesis makes another attempt to solve the inverse problem for a 3-stage axial flow compressor built by the California Institute of Technology with the support of the Office of Naval Research. The compressor is sufficiently large so that the insertion of pressure probes causes relatively small flow perturbations. The machine was designed to permit variations in blade shapes, blade angles, tip clearances, and staging. The installation at the California Institute of Technology is described by Bowen, et al. (5) This report also describes a theory of perfect fluid flow in axial flow turbomachines. The results of this theory are compared with the measured data of the first stage of a so-called "free-vortex" type blading. Part 2 of the report by Bowen, et al. (6), gave a detailed investigation of multistage flow for both "free-vortex" blading and a more complex "solid body rotation" blading. Measurements of blade skin friction losses were greater than expected from cascade tests. The growth of boundary layer along the inner and the outer annulus walls of the flow was less than expected. Alsworth and Iura (7) conducted extensive and detailed measurements of flow patterns in a single stage of "free-vortex" blading. They carried out accurate measurements of the blade skin friction losses and the radial distribution of work input. The final report from the California Institute of Technology was a hot-wire anemometer study of compressor stall by Iura and Rannie (8). They observed that stalled flow regions rotate in the direction of blade rotation without changing shape but with a speed that is not proportional to rotor speed.

After the Turbo-Propulsion Laboratory of the Naval Postgraduate School was built, the compressor was relocated there. Since then

it has been used for laboratory courses to supplement instruction in basic theories of turbomachines.

The present study was conducted for this compressor because of the possibility of changing its blade angles. For fixed stator and rotor blade angles a highly peaked curve of efficiency versus flow rate is usually obtained with axial flow compressors. At a slightly changed stator blade angle the peak will be displaced somewhat. A family of efficiency curves for various stator stagger angles is expected to yield a flatter efficiency curve over a wider range of flow rates for fixed rotor blade angles. The wide variation in flow rates required of the engines for the supersonic transport has led to design proposals by General Electric for compressors where the stator blade angles can be changed during operation of the jet engine. Hence, the thesis topic is of current interest.

For the tests it was necessary to obtain extremely accurate pressure measurements. An extremely sensitive bourdon tube pressure indicator was added to the instrumentation. A permanent Pitot-static tube was installed, and accurate flow rate calibrations were carried out. A parallel theoretical effort produced predictions of compressor performance by an existing computer program which was modified and adapted for use on the I. B. M. Model 360 computer system installed at the Naval Postgraduate School.

The author wishes to express a debt of gratitude to the faculty of the Department of Aeronautics of the Naval Postgraduate School for his engineering education. Particular thanks are due to Professor M. H. Vavra for his enthusiasm and guidance in showing what can be done with that education.

SECTION 2

O. N. R. 3-STAGE AXIAL FLOW COMPRESSOR

The compressor installation is shown in Fig. 1. The compressor inlet is in the background of the picture. The exit section is equipped with a throttle valve. A torque meter is installed on the shaft between the drive motor and the compressor. The overall dimensions of the equipment are given in Fig. 2.

A basic criterion of the design of the compressor was flexibility of operation. Each blade row may be removed. The angle setting of each blade is adjustable in 0.5° increments. In order to minimize flow disturbances by pressure probes the outside diameter of the blading is 36 in. For the same reason, the compressor has a hub/tip ratio of 0.6, giving an inside diameter of 21.6 in. and a blade height of 7.2 in. To permit simulation of conditions in a multistage unit, the machine has three stages. One row of inlet guide vanes simulates the effects of previous stages. Two rows of exit guide vanes remove the whirl component after the third stage. To insure that general alignment and tip clearances are maintained the compressor casing is very rigid.

The outer casing consists of two cast iron half-cylindrical shells bolted together along the horizontal plane through the axis. The rows of inlet guide vanes, stator blades, and exit guide vanes are held by bolts extending through the casing (Fig. 3). Inside the casing a hollow steel shaft carries three cast iron drums for each of the rows of rotor blades. The shaft is supported by two roller bearings whose outer races are pressed into the supporting strut

assemblies (Fig. 4). These assemblies rest in close fitting channels in the casing (Fig. 5). The six assembly struts have symmetrical airfoil sections. Figure 6 shows the nine blade rows after assembly.

The casing was designed to give maximum accessibility for measuring instruments. Six rectangular instrument ports are located in the upper half at 30° from either side of the vertical (Fig. 3). They are placed in the second and third rotor planes, the first, second and third stator planes, and behind the third stator. The ports hold a special instrument carriage permitting detailed flow surveys in any axial plane. The casing has numerous radial survey holes whose locations are specified in Fig. 7.

The blades are made of ALCOA 356 aluminum alloy without heat treatment. There are thirty rotor blades and thirty-two stator blades per row. The details of construction of the blades are illustrated in Figs. 8 and 9. The blading is designed to have a degree of reaction of 0.5 at the mean radius. The rotor blades are twisted by 49^o from hub to tip, and the stator blades by 13^o. At the mean radius, the important blade parameters are:

Parameter	Rotor	Stator
Camber angle	20.32 ⁰	29.98 ⁰
Design stagger angle	43.80 ⁰	28.80 ⁰
Thickness-to-chord ratio	0.1	0.1
Chord length	2.60 in.	2.60 in

The values of the blade parameters at other radii, and the method used for calculating the thickness distribution, are specified in Ref. 5. The point of maximum thickness was set at 0.35 of the chord length from the leading edge. The thickness was modified over the rear 15 per cent of the section to provide a trailing edge thickness 0.02 in. The thickness distribution is applied about a parabolic mean camber line. Figure 10 is a picture of a "free-vortex" stator blade. Tip clearances of 0.020 in. for stator, and 0.037 in. for rotor, are maintained by the use of shims at the point of attachment.

The attaching device permits variation of rotor and stator blade stagger angle. Figure 11 shows how these changes are made. The blade shaft extends through the rotor drum at the hub. An adjusting plate is secured to the blade shaft by a tapered pin. The plate has a series of eleven taps on a circle about the shaft axis which are spaced at intervals of 4.5°. Between the adjusting plate and the rotor drum is a fixed sector which is attached to the drum by a pin which guarantees its alignment. The fixed sector has eleven holes which are spaced at intervals of 4.0° of arc about the blade shaft axis. Blade alignment is maintained by a set screw through both holes in the adjusting plate and the fixed sector. If the center holes of the plate and the sector are lined up, the blade is at the design stagger angle of 43.8° for the "free-vortex" rotor. An angle change of 4.0° can be accomplished by keeping the set screw in the center hole of the adjusting plate and moving the blade so the screw is inserted into the next hole of the fixed sector. Small angle changes of 0.5° are accomplished by moving the blade slightly so that the two holes immediately adjacent to the center holes are lined up since blade angle is changed only by the difference in arc between the two holes. A similar arrangement is used for the stator blade settings (Fig. 10). Figure 12 illustrates stator blade settings which are one degree smaller than the design stagger

angle. The two blades on the right-hand side of the figure belong to the first stator row. The set screw is two holes away from the center or reference holes. The blades on the left-hand side of Fig. 12 belong to the row of inlet guide vanes. They are set at an angle which is by 0.5° smaller than the design stagger angle.

The assessories to the basic compressor will be described by following a path from the inlet to the exit and to the power source. The instrumentation of the compressor will be described in its appropriate place in the same sequence. Details of instrument calibrations are contained in Appendix A.

The inlet duct is seen in the background of Fig. 1. It consists of a screen, an entrance bellmouth, and a length of straight pipe. Figure 13 shows the large mesh screen which prevents the ingestion of foreign matter from the compressor bay apron. Mounted on the screen is a mercury thermometer used to determine ambient temperature. It has provisions for psychrometric analysis of the incoming air. Immediately behind the screen is the bellmouth. It changes the diameter rather abruptly from almost two diameters at the flare, to 36 in. in the axial distance of about 15 in. A cylindrical inlet duct two diameters long connects the bellmouth to the compressor proper. The inner surface of the duct is enameled to give smooth flow surfaces.

The flow rate through the compressor was determined by surveys in the inlet duct. Details of the calibration are given in Appendix B. The survey plane is about midway between the bellmouth and the compressor. The surveys were made with a Prandtl-type Pitot tube. In Fig. 14 the probe is installed for taking a vertical traverse. It is possible to disassemble the probe while the compressor is running (Fig. 15).
It may then be remounted for a horizontal traverse. Traverses at 30° and 60° from the vertical direction are possible. These traverses can be made by unbolting the entire inlet duct from the compressor and rotating it on its cradle. The design of the probe prevents measurements closer than 0.25 in. to the inlet duct wall.

A honeycomb straightener is installed behind the inlet Pitot tube to equalize the flow entering the compressor (Fig. 14). Attached to the forward strut assembly is an ogival wooden fairing (Fig. 5) to provide a smooth transition of the flow from the inlet duct to the compressor annulus.

Pressure measurements may be taken at any one of the radial survey ports described. Figure 16 shows the probe used for these measurements. It is a United Sensor three-hole probe, model YC-120. A central hole measures stagnation or total pressure. A static port is located on each of two faces of a wedge at an angle of 45° from the total pressure hole. The static pressures are balanced on a water manometer to insure alignment of the probe in flow direction. The probe is mounted on a probe holder which has vernier scales permitting radius adjustments to 0.01 in. and angle adjustments to 0.1°.

The accurate determination of flow rate is essential to compressor analysis. For this purpose a modified Prandtl type Pitot-static probe was installed. Figure 17 shows the installation details. The probe is inserted in a radial survey hole located ahead of the inlet guide vane row. It protrudes forward into a channel between two adjacent struts of the supporting assembly which is shown in Fig. 5. The probe is approximately at the center of the channel between struts. The probe is positioned in the radial survey hole by a brass plug, and

secured to the casing by a simple locking device. Figure 18 shows the probe and its locking device in the background. In the middle of the figure are seen the three-hole probe and its holder located between the inlet guide vanes and the first rotor. In the foreground, a plug, originally located at the same axial position as the probe, has been removed to show a hole through which the probe can be inserted.

Pressures obtained by the probes were measured by a Texas Instruments Fused Quartz Precision Pressure Gauge which is shown in Fig. 19. The velocity head in the inlet is about 0.6 in. of water. A lowpressure bourdon tube was obtained for the gauge which measures from 0 to 166 in. of water with the instrument reading from 0 to 200,000 counts. The calibration constant of the low pressure bourdon tube was determined to be 240.423 counts/psf of the pressure gauge (See Appendix A.). The pressure gauge operates both in manual and servo modes, the latter providing automatic nulling of the unit.

Since flexibility of pressure selection was desirable, two Giannini Sp-101A pressure scanners were connected to the pressure and reference ports of the bourdon tube. One of the scanners is seen in the foreground of Fig. 19. The arrangement of pressures to the 12channel switches is shown in Fig. 20. Later in the study a simpler system of five valves and two manifolds was constructed (Fig. 21) to eliminate leakage flows that seem to have occurred in the scanners. At this time the original 3-hole probe was placed permanently behind the third stator (Fig. 22). Another 3-hole probe was placed ahead of the first stage rotor. This arrangement permitted direct measurement of the pressure increase across the three stages, ΔP_{3-S} .

Figure 22 also shows the instrument traverse carriage mentioned before. It was used for a survey of total pressure in peripheral direction behind the third stator at two different radii (See Appendix C.). It is possible to vary the radial locations of the probe with an accuracy of 0.01 in. The probe may be rotated through 360° about its axis. The carriage can move the probe 15° in peripheral direction, which covers a whole blade spacing since a stator blade channel covers 11.25°, and a rotor blade channel 12.0° in peripheral direction. The locations of the radial survey holes with reference to the indicated meridional angle of the carriage are shown in Fig. 23. The represented stator profiles are at the design stagger angle at the mean radius. The actual stagger angle measured with respect to a plane through the axis is the complement of the indicated angle.

A short cylindrical duct connects the compressor to the exit elbow,which is equipped with sheet metal turning vanes to minimize losses. A transition piece connects the elbow to the throttle valve which is seen in Fig. 1. The valve consists of two rectangular metal doors which move in slides. The position of the doors is controlled by a right- and left-hand threaded lead screw which is rotated by a Graham variable-speed transmission. A revolution counter indicates the approximate valve opening.

The compressor is driven by a 50 HP Fairbanks Morse induction motor. It requires a three-phase, sixty-cycle, 440 volt power supply, and can operate at two fixed speeds; namely, at about 900 rpm or 1200 rpm.

Attached to the motor shaft is a Baldwin-Lima-Hamilton SR-4 torque meter type A. It is shown in Fig. 24 during calibration with

known weights attached to a lever. In the background may be seen a Brown Instruments strain gauge readout which is of the standard Wheatstone bridge type. A conversion constant of 4.1565 ft-1b/1b of torque meter readout was determined (See Appendix A.). Under the protective cover next to the torque meter in Fig. 24 is installed a six lobe flux cutter to measure the motor: speed by means of an electronic counter.

SECTION 3

FLOW RATE CALIBRATION

The permanent Pitot-static tube was installed to provide rapid and accurate measurements of volume flow rate. At a given throttle valve setting this probe was calibrated against the result of two traverses of the cylindrical inlet duct. Through-flow velocities in the flow annulus ahead of the inlet guide vanes were varied from 110 ft/sec to 70 ft/sec, so that compressibility effects could be ignored. The objective of the calibration was to determine a calibration constant which gave the volume flow rate when multiplied by the velocity measured at the permanent probe.

An initial survey of the inlet duct was made at the highest possible flow rate of 512 ft³/sec. Figure 25 shows a plot of the measured velocities of both horizontal and vertical traverses. The smooth velocity profile in the duct is evident. Figure 26 is a graph of the measured velocities in the inlet duct at the lower flow rate of 310 ft³/sec, which shows a higher degree of scatter. For these tests the pressure indicator was operated in the servo mode. Even in the meter mode the indicated pressure oscillated considerably. Pressure fluctuations seemed to have been initiated by the vibration of the brass rod on which the traversing Pitot-static tube was mounted in the inlet duct. The pressure indicator corrects a disparity between the angular position of a mirror of the bourdon tube and the indicator dial at the rate of the full scale reading of 200,000 counts in 120 seconds. With the oscillating pressure applied to the sensitive instrument, oscillations of 50 counts were observed for a pressure

corresponding to a reading of 600 counts. To reduce these oscillations, variable length capillary tube damping devices were installed both in the total and static pressure lines of the traverse Pitot-static tube. Details of the arrangement and the results of tests are shown in Appendix B-1.

A special survey was made to determine the thickness of the boundary layer on the walls of the cylindrical inlet duct. However, construction of the traverse probe prevented taking readings closer than 0.25 in. from the wall. Figure 27 is a plot of the readings at high and low flow rates. In each case it is evident that large losses occur near the walls. With the velocity distributions of Fig. 27 the flow rate is about 2.5 per cent smaller than the value obtained without considering the changes near the walls.

Data were taken in the boundary layer at intervals of 0.25 in. from 17.75 in. to 16.00 in. In the main stream, data were taken at 4.0 in. intervals from 16.00 in. to the centerline. With horizontal and vertical traverses, four points were obtained at each radius and two at the axis for a total of 46 locations. At each station the following measurements were taken:

۹ _і	- velocity head in the inlet duct (counts)
۹ _o	- velocity head of the permanent Pitot-static probe (counts)
P _{si}	- static pressure with reference to atmosphere in inlet
	duct (counts)
P	- static pressure with reference to atmosphere at permanent

P - static pressure with reference to atmosphere at permanent Pitot-static probe (counts)

То	-	temperature	at at	the	inlet	screen	(°F)
PBar	-	barometric	pres	sure	(in.	of Hg)	
							0

T_{Bar} - temperature of column of mercury (⁶F)

The barometric pressure P_{Bar} (in. Hg) was converted into pounds per square foot to obtain the atmospheric pressure P_A by

$$P_{A} = P_{Bar}$$
 (71.467) (psfa) (1)

where the constant was obtained by correcting the height of the column of mercury for temperature variations in specific gravity of the liquid. The inlet temperature was converted to absolute temperature, and was considered to be the total temperature T_{to} because of the low velocities, or

$$T_{t_o} = T_o + 459.7$$
 (°R) (2)

The static pressure P_i at the inlet was converted from the meter reading to an absolute pressure by

$$P_i = P_A - \frac{P_{si}}{240.423}$$
 (psfa) (3)

where the constant was obtained by the calibration procedure described in Appendix A. The pressure P_o measured at the permanent probe was obtained in a similar manner. The local air density ρ_c at the inlet was computed from

$$\varrho_{i} = \frac{0.002378 P_{i}}{(14.696)(144)} \frac{518.7}{T_{to}} = \frac{P_{i}}{T_{to}} (5.82 \times 10^{-4}) (1b \text{ sec}^{2}/\text{ft}^{4})$$
(4)

and similarly ρ_o at the permanent probe. The velocity head in the inlet q_{i1} was converted from the meter reading,

$$Q_{i1} = \frac{Q_i}{240.423}$$
 (psf) (5)

The dynamic head at the permanent probe q_{ol} was obtained similarly. The velocity V_i in the inlet is then

$$V_{i} = \sqrt{\frac{2 q_{i1}}{r_{i}}} \qquad (ft/sec) \qquad (6)$$

A similar procedure gave the velocity V_0 at the permanent probe. The arithmetic average of the 46 values of V_0 obtained during the carrying out of the traverses gives the average value V_{0av} of

$$V_{oav} = \frac{1}{46} \sum_{j=1}^{46} V_{oj} \qquad (ft/sec)$$

The measured values of V_{i} were adjusted to account for variations in flow rate due to slight compressor speed variations

$$V_{iad} = V_i \frac{V_{oav}}{V_o}$$
 (ft/sec)

The four values of V_{iad} obtained at each radius were averaged by

$$V_{iav} = \frac{1}{4} \sum_{j=1}^{4} V_{iadj}$$
 (ft/sec)

The volume flow rate was first calculated by neglecting the losses in the boundary layer to give \sqrt{t} . In general the volume flow rate is obtained by

$$\nabla = 2 \pi \int_{0}^{r_{o}} \nabla r dr$$
 (ft³/sec)

If the above equation were integrated directly, the velocity at the axis would not be included in the volume flow rate calculation because the zero radius is a member of the product under the integral. Therefore the integral was replaced by a summation.

$$V_{t} = \sum V_{iav} \Delta A$$
 (ft³/sec)

The quantity $\Delta A = 2$ M r h/144 represented that part of the annulus area in the center of which V_{iav} was measured, where h is the height of the area. This method assumed that the velocity measured at the radius of 16.0 in. exists also at the wall. A volume flow rate deficiency was then calculated to account for the difference in velocities at 16.0 in. radius and those measured in the boundary layer, or

$$V_D = V_{iav 16''} - V_{iav B,L}$$
 (ft/sec)

By a trapezoidal integration the volume flow deficiency $\sqrt{-}_{D}$ becomes

$$V_{\rm D} = 2 \, \pi \int_{16.0}^{18.0} V_{\rm D} r \, dr \qquad ({\rm ft}^3/{\rm sec})$$

Then the actual volume flow rate is

$$\nabla f_c = \nabla f_t - \nabla f_p$$
 (ft³/sec)

A calibration constant CCC for each run was obtained from

$$CCC = \frac{\sqrt{f_c}}{v_{oav}} \qquad (ft^{3}/sec \ per \ ft/sec)$$

A first series of calibration runs was invalidated when a leakage hole was discovered in the traversing Pitot-static tube. After repairs, the calibration constants CCC were obtained with a maximum relative error of 0.1 per cent. The final calibration constant was 4.4050 ft³/sec per ft/sec velocity obtained from the readings of the permanently installed Pitot-static probe.

A data reduction computer program, ONRFLO, for these calibration procedures, was generated for the I. B. M. Model 360 computer. A listing of the program is included as Appendix B-2. Sample output data from the final run is given in Appendix B-3.

SECTION 4

MEASUREMENT OF COMPRESSOR PERFORMANCE

The objective of the study was to determine the effect of changes of the stator blade orientation on compressor performance. It was decided to restrict performance investigation to the three stages only; namely, from a station ahead of the first rotor to a station after the last stator, or between locations SP-2 and SP-8 of Fig. 7. The effects of the inlet, the inlet guide vanes, the exit guide vanes, and the diffuser were not considered.

For tests at a particular stator stagger angle the barometric pressure P_{Bar} was determined first. For various settings of the throttle value the following measurements were taken:

T_o - ambient temperature (^oF) P_{so} - static pressure with reference to atmosphere at the

permanent Pitot-static probe (counts)

q_o - velocity head at the permanent Pitot-static probe (counts)
P_{tig} - total pressure with reference to atmospheric between the

inlet guide vanes and the first rotor (counts)

 ΔP_{3-S} - total pressure difference across the three stages (counts) T_r - reading of torque meter (1b)

N - compressor speed measured by electronic counter (rpm) With the relations listed on p. 35 these measuring data establish the following quantities:

 $P_{A} = P_{Bar} (71.467)$ (psfa) (1) T = T + 4597 (2)

$$P_0 = \frac{P_{50}}{240.423}$$
 (R) (2)
(R) (2)

$$\rho_{o} = \frac{0.002378 P_{o} 518.7}{(14.696)(144) T_{to}} = \frac{P_{o}}{T_{to}} (5.82 \times 10^{-4}) (16 \text{ sec}^{2}/\text{ft}^{4})$$
(4)

$$g_{o1} = \frac{g_o}{240.423}$$
 (psf) (5)

$$V_{o} = \sqrt{\frac{2 q_{o1}}{\rho_{o}}} \qquad (ft/sec) \qquad (6)$$

The absolute total pressure ahead of the first stage, or after the inlet guide vane, P_{tiga}, is

$$P_{tiga} = P_A - \frac{P_{tig}}{240.423}$$
 (psf) (7)

The pressure difference across the three stages \bigtriangleup P $_{\rm 3-SA}$ is obtained from

$$\Delta P_{3-SA} = \frac{\Delta P_{3-S}}{240.423}$$
 (psfa)

From the torque meter reading T_r the actual torque T_{rq} is $T_{rq} = T_r (4.1565)$ (ft-1bf)

where the constant was obtained by the calibration procedure described in Appendix A. The angular velocity ω is with the measured speed, N

$$\omega = \frac{2\pi N}{60} \qquad (rad/sec)$$

Both volume and weight flow rates were calculated. The volume flow rate \sqrt{c} is then

$$V_{c} = V_{o}$$
 (4.4050) (ft³/sec) (8)

where the constant was obtained by the calibration procedure described in the preceding section and Appendix B. The weight flow rate w is

$$\dot{w} = \sqrt{c} \frac{32.174 \ P_{A} \ 518.7}{(14.696)(144) \ T_{to}} = \sqrt{c} \ \frac{P_{A}}{T_{to}} (7.886) \ (1bm/sec)$$
(9)

For comparison with the prediction program a referred flow rate $\overset{\,\,{}_{w}}{_{r}}$ is defined by

$$\dot{w}_{r} = \frac{\dot{w} \sqrt{T_{to}}}{P_{A} / 144} \qquad (1bm \sqrt{\sigma_{R}/sec psia}) (10)$$

Two basic indices of performance were computed; namely, the 3-stage pressure ratio P_{r3-s} , where

$$P_{r 3-S} = \frac{P_{tiga} + \Delta P_{3-SA}}{P_{tiga}}$$
(11)

and the 3-stage total-to-total efficiency η_{3-S} obtained from

$$\eta_{3-s} = \frac{P_{Wth}}{P_{WA}}$$
(12)

where $P_{Wth}^{and} P_{Wa}^{p}$ are the theoretical and actual horsepower, respectively. The theoretical power is P_{Wth}^{p} , given by

$$P_{W+h} = \dot{w} \, \Delta h_{is}(778.3) \qquad (ft-lbf/sec)$$

where Δh_{is} is the isentropic specific enthalpy difference for a frictionless compression from P_{tiga} to P_{td} after the third stator. Assuming a perfect gas there is

$$\Delta h_{is} = c_p \Delta T_{t 3-s} \qquad (Btu/1bm, °R)$$

where ΔT_{t3-s} is the isentropic temperature difference from the total temperature T_{tiga} ahead of the first stage, to T_{td} after the third stator (See Fig. 28.). Since T_{tiga} very nearly equals the ambient temperature T_{to} , there is

$$\Delta h_{is} = c_p T_{to} \left(\frac{T_{td}}{T_{tiga}} - 1 \right) \qquad (Btu/1bm, {}^{o}R)$$

With the isentropic relation

$$\frac{T_{td}}{T_{tiga}} = \left(\frac{P_{td}}{P_{tiga}}\right)^{\frac{y-1}{y}}$$

the final expression for the determination of the theoretical power is

$$P_{WT+h} = \dot{w} c_p T_{to} \left[(P_{r3-S})^{\frac{k-1}{3}} - 1 \right] 778.3 \quad (ft-1) f/sec$$
(13)

The actual power is obtained from

$$P_{WA} = T_{rg} \omega$$
 (ft-lbf/sec)

The total-to-total efficiency at the three stages is then

$$n_{3-s} = \frac{\dot{w} c_{p} T_{t_{0}}}{T_{r_{g}} \omega} \left[\left(P_{r_{3}-s} \right)^{\frac{y-1}{y}} - 1 \right] 778.3$$
(14)

For comparison with other compressor data certain non-dimensional parameters are introduced. The average flow function ϕ_{av} is the ratio of through flow velocity V_a and peripheral speed at the mean diameter U_{av} , or with

$$V_a = \frac{V_c}{651.4/144} = V_c (0.221)$$
 (ft/sec)

and, for the mean diameter of 14.4 in.

$$U_{av} = \omega \frac{14.4}{12} \qquad (ft/sec)$$

there is

$$\Phi_{av} = \frac{V_c}{\omega} \frac{(12)(144)}{(144)(651.4)} = \frac{V_c}{\omega} (0.1842)$$
(15)

An average dimensionless stage pressure coefficient $\Psi_{\mu\nu}$ is defined by

$$\frac{\Delta P_{3-5A}}{3} = \Psi_{av} \rho_0 U_{av}^2 \qquad (psf)$$

or

$$\Psi_{av} = \frac{\Delta P_{3-SA}}{3 e_{o} U_{av}^{2}}$$
(16)

The so-called dimensionless deflection coefficient $\mathcal{T}_{\rm AV}$ is defined by

$$\frac{\Delta P_{3-SH}}{3} = \frac{\Delta P_{3-SA}}{3 \gamma_{3-S}} = \frac{\psi_{av}}{\gamma_{3-S}} \rho_0 U_{av}^2 \quad (psf)$$
$$= \chi_{av} \rho_0 \overline{U}_{av}^2 \quad (psf)$$

Hence,

$$\mathcal{T}_{av} = \frac{\Psi_{av}}{\mathcal{T}_{3}-S}$$
(17)

The performance calculations were made for the conditions along the mean radius of the stage, 14.4 in., by assuming that these conditions are representative of the performance of the 3-stage compressor. Detailed investigations which support this simplification are given in Appendix C. The data reduction was accomplished by the computer program ONRETA, which is listed also in Appendix C.

Data were taken on 11 occasions for the following settings of stator stagger angle:

H	Run		Stator	Stagger	Angle
1,	2,	3		27.8 ⁰	
4,	5			23.8 ⁰	
6,	7			31.8 ⁰	
8,	9			35.8 ⁰	
10				39.8 ⁰	
11				44.3 ⁰	

SECTION 5

PERFORMANCE PREDICTION PROGRAM

The program used to predict the performance of multi-stage compressors is called AXCO3. It is listed in Appendix D and represents an adaptation of a program by Vavra (3), modified by Gibbons and Bartels (4).

The method assumes that the flow is axisymmetric. Computations are made for the streamlines at the mean radius of a stage. A stage by stage analysis of the machine is performed. The output of one stage is used as input for the next stage. The computation is started at a flow rate less than that anticipated for surge, and the flow rate is then increased by small increments to cover the whole operating range of the machine.

Program AXCO3 uses two principal subroutines; namely, one called ROTOR and the other called STATOR. They establish the velocity triangles of a rotor or a stator row of blades, respectively, from the known geometry of the bladings, flow rate, and discharge conditions of the preceding row of blades. Both subroutines make use of three additional subroutines.

Subroutine THEORY calcualates the flow conditions for minimum profile losses. Cascade data by Lieblein are used for this purpose (2). These data are presented as curves for zero-camber incidence angle $(\dot{\iota}_{0})_{10}$, slope factor n, zero camber deviation angle $(\in_{0})_{10}$, and slope factor m, all given as functions of the inlet air angles β_{1} or α_{1} , with the blading solidity σ' as a parameter. The solidity σ' is defined as the ratio of blade chord c and blade spacing s.

The curves described above have been expressed by polynomials in powers of solidity and inlet air angle which are used in subroutine THEORY. The accuracy of the polynomials has been verified, and the errors are listed in Appendix D. The incidence angle for minimum loss is determined by an iteration procedure which changes the inlet air angle until agreement is reached within a tolerance of 0.02° . The deflection which occurs at the minimum profile loss can then be calculated with the established polynomials also.

The subordinate subroutine CASCAD calculates the performance of the blading at the actual incidence or inlet flow angle of the blade row by using a graph of Lieblein that establishes the change of the deviation angle with incidence angle ($d\delta$ / $d\iota$) as a function of inlet flow angle and solidity.

In the earlier computer programs the curves of this graph were expressed by a polynomial that covered the range of solidities from 0.0 to 1.8. Since the curves have nearly exponential character, which cannot be expressed with ease by polynomial functions, it was found that an error of the order of 10 per cent was possible. Therefore, a new polynomial was established for solidities between 0.6 and 1.4 which limits the error to less than 1.9 per cent.

Subroutine CASCAD further utilizes experimental limits on blading performance by Howell (9) which are illustrated in Fig. 29. Howell found that for most cascades the ratio of the profile drag coefficient C_D at an arbitrary incidence angle $\dot{\iota}$ and $C_{\rm Cmin}$ at the minimum loss incidence $\dot{\iota}_{10}$ is a unique function of the quantity $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$, where ϵ_{10} is the optimum flow deflection for the incidence angle $\dot{\iota}_{10}$. Since the applicability of the data presented in Ref. 2 is limited to

design point calculations, where the incidence angles are close to the nominal incidence l_{10} , the curves cannot be used for off-design analyses without restrictions. Without such limits the flow deflections ϵ could be increased simply by increasing the incidence angle i, since the data of Ref. 2 do not establish criteria for flow separations which are associated with a radical increase in profile losses. Experimental results of Howell show that the flow deflection E at incidence L should not exceed the optimum deflection ϵ_{10} by more than 25 per cent to avoid excessive losses. He states that this limit occurs if the profile loss coefficient C_n is about twice the minimum loss coefficient C_{Dmin} . The solid curve in Fig. 29, labeled ϵ/ϵ_{10} , is supposed to be the relation between ϵ/ϵ_{10} and $(i-i_{10})/\epsilon_{10}$ as obtained from subroutine CASCAD with the data from Ref. 2. It will be assumed that this curve holds for negative values of $(\dot{l} - \dot{l}_{10})/\epsilon_{10}$ only. For positive values of this parameter the dashed curve will be applied to satisfy the limitations of Howell. This curve is somewhat arbitrary but represents the best estimate for the actual operating condition of compressor cascades. Figure 29 further shows a curve relating the ratio $C_D^{/C}$ Comin to $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$, which is adapted from Ref. 9. Both this curve and the dashed curve for the deflection ratio have been expressed analytically in subroutine CASCAD. If the ratio C_D/C_{Dmin} exceeds a value of 2.0 for positive quantities $(\dot{l} - \dot{l}_{10})/\epsilon_{10}$, the program prints out "surge in blade row xx" and proceeds with calculations at an increased flow rate. The positive value of $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$ at which this occurs is the input quantity SMAX. If C_D/C_{Dmin} exceeds a value of 2.0 at incidence angles i smaller than i_{10} , the program prints out "minimum pressure in blade row xx" and halts computation. The negative value of

 $(t-\dot{t}_{10})/\epsilon_{10}$ at which this occurs is the input quantity SMI. In both instances the symbol xx refers to the number of the blade row, and indications are given also whether the row is a stator or a rotor. For any incidence angle within the useful operating range, the values of the deflection ratio and of the ratio C_D/C_{Dmin} are computed by subroutine CASCAD and control returned to the blade row subroutines ROTOR or STATOR.

The efficiency of a blade row is determined by subroutine ETACAL. Losses due to tip clearances, secondary flows, and wall friction are taken into account with the relations proposed by Vavra (1).

If conditions of surge exist, the flow rate is increased by about 1.0 per cent and the entire computation is repeated. If the incidence angles are in the so-called useful operating region of Fig. 29, the output of subroutine ROTOR or STATOR becomes the input for the subroutine that calculates the next row of blades. Interstage data are printed out as the program progresses from one stage to the next. If all blade rows of a machine have been processed, the overall compressor efficiency and pressure ratio are computed for the particular flow rate. This flow rate is then increased by a specified amount, and the calculating process is repeated. If the so-called minimum pressure is reached, the computation stops and a summary of the overall performance parameters is printed out.

The details of the calculation of the flow through the inlet duct, the inlet guide vanes, the exit guide vanes, the diffuser and the discharge passages are not described in this thesis since it is concerned only with the performance prediction of the three stages of the compressor from a station ahead of the first rotor to the discharge at

the third stator. The methods applied for the flow analysis in these passages may be found in Vavra (3) and Gibbons and Bartels (4).

According to Howell there occur additional effects that influence the off-design calculations. The growth of boundary layers on the walls of the annular flow channel will change the velocity profiles and can reduce significantly the effective flow area. The program takes account of this effect by a blockage factor that can vary from stage to stage. This boundary layer growth is responsible also for increasing peaks in the radial distribution of the axial velocity components in succesive stages. These higher velocities outside of the wall boundary layers produce smaller incidence angles for the main portion of the flow, thereby decreasing the actual flow deflection and reducing the work absorbed by the fluid in the stage. Hence in a compressor that consists of stages with identical bladings, the last stages will produce smaller pressure ratios than the stages at the compressor inlet. Experience shows the efficiency in successive stages is not reduced by the peaking of the velocity profiles, and their effects are usually taken into account by a so-called work-done factor that is about unity for the first stage and gradually decreases for the successive stages. Such work-done factors can be introduced in program AXCO3, but for the present compressor they will be taken as unity because of the small number of stages and the large blade heights. For the same reasons the blockage factor is assumed to be equal to unity also.

The geometry of the blades could be obtained from the information of Ref. 5. Values at the mean radius were used for the analysis. Bowen (5) determined that the average flow angle at the mean radius

after the inlet guide vanes ALE was 20.0° for the design inlet guide vane stagger angle of 11.4° , independent of flow rate. From Fig. 12 it can be recognized that the inlet guide vanes were set at a stagger angle of 10.9° for the tests. Therefore a value of 19.5° was used in the analysis program for the average flow angle leaving the inlet guide vanes. Reference 5 does not give values of C_{Dmin} for the blading. It is possible to introduce in the program various values of C_{Dmin} both for rotor and stator blading. Hence it was possible to estimate an average apparent value of C_{Dmin} for blading by comparing measured results to predictions of the analysis program for several assumed values of C_{Dmin} .

A prediction of the 3-stage efficiency for different stator stagger angles is shown in Fig. 30 for an assumed value of C_{Dmin} of 0.020. The light line connecting the individual peak efficiencies represents the calculated operating envelope which could be obtained if continuous control of stator stagger angle for maximum efficiency were possible.

For comparison with measured performance a series of calculations were made for stator stagger angles of 23.8° , 27.8° , 31.8° , 35.8° , 39.8° , and 44.3° . For each stagger angle, values of C_{Dmin} of 0.000, 0.006, and 0.008 were assumed. To avoid confusion with the computations of actual performance based on measured quantities, which have been called runs, each calculation of the analytical prediction program has been assigned a two-digit case number. The first digit identifies the stator stagger angle of the case as follows:

First Digit	Stator Stagger Angle
1	23.8 [°]
2	27.8 [°]
3	31.8°
4	35.8 [°]
5	39.8°
6	44.3 [°]

The second digit identifies the assumed value of C_{Dmin} of the case as follows:

Second Digit	Assumed Value of C
1	0.000
2	0.006
3	0.008

For example, case 42 is the predicted performance at a stator stagger angle of 35.8° with a value of C_{Dmin} of 0.006. The summary output of each case is presented in Appendix D.

SECTION 6

DISCUSSION OF RESULTS

Experimental data for performance measurements were taken during 55 hours of running time. Another 81 hours of operation were used for miscellaneous calibration and testing, including 44 hours for flow rate calibrations.

The rotor stagger angle was set at 43.8° for all runs. The design stator stagger angle is 28.8°. For the performance tests, the stator stagger angle was set at 23.8°, 27.8°, 31.8°, 35.8°, 39.8°, and 44.3°. Measured performance is presented in comparison with the predicted results of AXCO3, and also by establishing dimensionless performance parameters. Figures 31 through 36 are graphs of measured performance in comparison with the prediction by AXCO3 for each stator blade angle setting. Figures 37 and 38 are summary plots of maximum efficiency and pressure ratio for all stator blade angle settings. Figures 39 through 44 are graphs of the non-dimensional parameters at each stator stagger angle. Figure 45 is a summary plot of maximum efficiencies and associated deflection coefficients for all stator blade angle settings. Figure 46 is a summary plot of maximum pressure coefficients for all stator blade angle settings.

On each of Fig. 31 through Fig. 36 the 3-stage efficiency reaches a peak value for each stator stagger angle. The referred flow rate at which this peak occurs decreases as the stator stagger angle increases.

Also plotted on each of Fig. 31 through Fig. 34 are the results predicted by AXCO3 for the three estimated values of C_{Dmin} of 0.000, 0.006 and 0.008. The predicted 3-stage efficiency reaches a peak for

each C_{Dmin} . The referred flow rate associated with predicted peak efficiency decreases with increase in stator stagger angle. The referred flow rate at which the predicted peak efficiency occurs decreases with increase in C_{Dmin} at a given stator stagger angle.

AXCO3 predicts the condition of surge for each case according to the criteria of Howell shown in Fig. 29. The surge condition is assumed to exist whenever the parameter $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$ exceeds the maximum positive value SMAX which has been inserted in the program. The incidence angle for the rotor blade rows becomes larger as the through-flow velocity decreases until a surge condition is indicated. AXCO3 predicts surge at the same referred flow rate for each setting of stator stagger angle. This is due to the fixed angle of the inlet guide vanes. The assumption has been made that the air flow angle leaving a blade row does not change with variations in flow rate in the incompressible flow regime. This result was verified by Bowen (5). The inlet guide vanes were not rotated as the stator stagger angle was varied. At all stator stagger angle settings the first stage rotor had the same incidence angle at particular flow rates. In the stage-by-stage analysis, "surge in rotor 1" was indicated at the same flow rate in each run, regardless of the stator stagger angle setting of subsequent stators. The region of referred flow rates smaller than that at which surge is indicated by the program is marked with a dashed line on Figs. 31 through 34, and is less than 41.5 lbm $\sqrt[]{\circ}_R$ /sec psia for every case.

When the value of the parameter $(\dot{\iota} - \dot{\iota}_{,0})/\epsilon_{,o}$ is determined to be less than SMI, the negative value of the parameter which has been inserted in AXCO3, the program stops the computation and prints

"minimum pressure in blade row xx." The referred flow rate at which computation is stopped decreases as stator stagger angle is increased. At stator stagger angles of 31.8° and lower (Figs. 31 through 33) the referred flow rate at which computation is stopped is larger than the maximum flow rate of the graph. At a stator stagger angle of 35.8° (Fig. 34), the computation stops at a referred flow rate of 45.5 $1 \text{ bm } \sqrt[6]{^{\circ}\text{R}}$ /sec psia. At stator stagger angles of 39.8° and 44.3° (Figs. 35 and 36), the program did not establish useful data. At the high stator angles the referred flow rate at which computation was stopped was lower than the referred flow rate for surge in the first stage rotor. The latter flow rate remained unchanged at a fixed inlet guide vane angle.

This difficulty illustrates some of the limitations of program AXCO3 when applied to an actual machine. The program assumes that the compressor is designed properly. Changes from stage to stage must be gradual. For example the annulus area may change gradually from stage to stage with no adverse effects. The checks for minimum pressure and surge limits are applied in each blade row. Surge in any blade row is interpreted as surge in the machine, and similar limitations are imposed for minimum pressure. The program cannot cope with discontinuities similar to those that occur by leaving the angle of the inlet guide vanes unchanged. It is possible to imagine a situation where the angle setting of the inlet guide vanes might have to remain unchanged; for instance, if the inlet guide vanes must support the front bearing of the rotor shaft. In such a design the first rotor would have higher blade efficiencies than succeeding blade rows at large flow rates, while at lower flow rates

the blade efficiencies of the first rotor would be smaller than for succeeding blade rows. The 3-stage efficiency of an actual machine is an overall parameter which includes the effect of the different blading efficiencies for different blade rows. In an actual machine the flow will adjust itself to these conditions, whereas program AXCO3 cannot cope with these peculiar circumstances. For these reasons the program did not produce performance data for the higher stator stagger angles of 39.8° and 44.3°.

The detection of the actual surge point during the tests is difficult with the available instrumentation and must be based on acoustic phenomena. Incipient surge, probably due to rotating stall, was associated with an unmistakable oscillating change in sound level produced by the compressor. This effect appeared suddenly even when flow rate was decreased slowly. To eliminate the sound due to this surge condition it was necessary to increase the flow rate by about 5 to 10 per cent. A flow rate slightly above the surge point could then be reached by gradual throttling. For each run one test point was taken in the surge region and one test point as close as possible to the surge point. Efficiency at test points in the surge region was below 0.90 for all stator stagger angles. The efficiency at the data point close to stall rose from 0.89 to 0.94 as the stator stagger angle was increased from 23.8° to 31.8°, and efficiency decreased to 0.89 with further increase in stator stagger angle to 44.3°. As the surge condition is approached the rate of decrease of efficiency is set by the relative location on the efficiency versus referred flow rate graph of the two data points in the surge region and close to surge. At a stator stagger angle of 31.8° which produced the maximum

3-stage efficiency and at 35.8°, efficiency decreased most rapidly as the surge condition was approached. For other stator stagger angles the efficiency decreased less rapidly. It is not possible to make a meaningful comparison between measured surge point data and the surge condition calculated by AXCO3 because surge was predicted to occur at the same referred flow rate for each case.

It is possible to compare measured values of maximum 3-stage efficiency with the maxima calculated by program AXCO3. For all four stagger angles at which computations were made, the maximum 3-stage efficiencies were predicted to occur at flow rates about 5 per cent greater than the flow rates at which the measured maxima occurred. According to Howell the point of maximum efficiency occurs for a value of the parameter $(i-i_{10})/\epsilon_{10}$ about equal to +0.19 (Fig. 29). At greater positive values of the parameter the losses are believed to increase rapidly. Since the measured maximum efficiency occurred at a flow rate which was about 5 per cent less than was predicted, an analysis of off-design performance of a compressor stage was made. The method of Vavra (Ref. 1) assumes that the air flow angles leaving a blade row do not change with flow rate in incompressible flow. The velocity triangle changes caused by a reduction from design flow rate are shown in Fig. 47. The subscript d refers to the design condition, and the primed quantities refer to off-design. The analysis was conducted at the maximum efficiency point for a stator stagger angle of 27.8°. The following quantities were measured:

Design flow coefficient $\phi_d = 0.517$ Inlet flow angle \ll , (fixed) = 20.0°

The off-design flow rate was fixed at 5 per cent less than the design flow rate, to correspond to the flow rate at which the measured maximum efficiencies occurred. The off-design flow coefficient is

The peripheral components of velocity are:

$$\frac{V_{uid}}{U} = \varphi_d \quad \tan \alpha_1$$

$$\frac{V_{ui}}{U} = 0.95 \quad \varphi_d \quad \tan \alpha_1$$

$$\frac{W_{uid}}{U} = \frac{U - V_{uid}}{U} = 1 - \varphi_d \quad \tan \alpha_1$$

$$\frac{W_{ui}}{U} = \frac{U - V_{ui}}{U} = 1 - 0.95 \quad \varphi_d \quad \tan \alpha_1$$

The relative inlet flow angles for both conditions are:

$$\beta_{id} = \arctan \frac{W_{uid}/U}{\phi_d} = \arctan \left[\frac{1}{\phi_d} - t \ln \alpha_i \right]$$

$$\beta_i^{-} = \arctan \frac{W_{ui}^{-}/U}{0.95 \phi_d} = \arctan \left[\frac{1}{0.95 \phi_d} - t \ln \alpha_i \right]$$

With the same rotor stagger angle, the difference in incidence angle i between design flow rate and off-design flow rate is the difference in β_1

$$i' - i_d = \beta_i - \beta_{id} = 59.2^{\circ} - 57.5^{\circ} = +1.7^{\circ}$$

The difference between the parameter $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$ at the design flow rate and the parameter at a flow rate 5 per cent less than design is

$$\Delta \frac{(i-i_{10})}{\epsilon_{10}} = \frac{+1.7}{+11.2} = +0.15$$

where ϵ_{10} was calculated by AXCO3. The measured maximum efficiencies occurred at a value of the parameter $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$ which was greater by 0.15 than the value of the parameter for which the program AXCO3 predicted maximum efficiencies.

Lieblein's data were obtained from compilations and reductions of cascade test data primarily for blade profiles which were NACA 65 (A_{10}) - series airfoils built up on equivalent circular arc camber lines. The free-vortex blades installed in the compressor have a thickness distribution which was derived from the theory of Ref. 1 applied to a parabolic mean camber line. If the actual incidence for minimum profile loss for the installed blades were smaller by 1.7° than calculated by subroutine THEORY, all values of the parameter $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$ calculated in subroutine CASCAD would be larger by 0.15 than they actually are. The flow rate at which the maximum efficiency is calculated would be 5 per cent greater than the flow rate at which maximum efficiency was actually measured.

Howell presented results of cascade tests of British C-1 and C-2 airfoil shapes for several values of solidity. The C_D/C_{Dmin} curve of Fig. 29 was obtained by interpolation for a solidity of 0.8. If the upper limit of the parameter $(\dot{\iota} \cdot \dot{\iota}_{10})/\epsilon_{10}$ for minimum loss were extended by 0.15 from 0.19 to 0.34, the flow rate at which maximum efficiency was calculated analytically would coincide with the flow rate for measured maximum efficiency.

The measured efficiency curves are more peaked than the curve computed by AXCO3. If the C_D/C_{Dmin} curve of Fig. 29 had a greater slope in regions where C_D/C_{Dmin} approaches a value of 2.0, the predicted efficiency curves would be less flat and would more nearly approximate the curves of measured performance.

It was one object of this thesis to attempt to determine the value of $C_{\rm Dmin}$ for the installed blade profile. Vavra (1), p. 377, indicates that these values usually do not exceed 0.008. For each stator stagger angle, analytical calculations were made for estimated $C_{\rm Dmin}$ of 0.000, 0.006 and 0.008. The results for the smaller stator

stagger angles are plotted on Fig. 31 through Fig. 34. The value of C_{Dmin} was estimated for each stator stagger angle:

Stator Stagger Angle	Estimated C _{Dmin}
23.8	0.008
27.8	0.004
31.8	0.003
35.8	0.007

The arithmetic average of the estimated values is 0.0055, but there is is obviously considerable scatter in the experimental data.

A summary plot of maximum peak efficiencies is presented in Fig. 37. If continuous control of stator stagger angle were possible, as in the proposed SST engine, Fig. 37 would be an operating curve for maximizing efficiency at any flow rate. The peak maximum 3-stage efficiency was 0.956, measured at a stator stagger angle of 31.8. Also shown is a flatter curve of predicted peak 3-stage efficiencies using C_{Dmin} of 0.006 for the four lower stator stagger angles. The maximum predicted value is 0.942 at a stator stagger angle of 30°. The predicted values occur at flow rates 5 per cent higher than corresponding measured val-The measured values decline more steeply at stagger angles other ues. than the angles for maximum efficiency than do the analytically calculated values. The curve relating stator stagger angle to performance shows that, in the region near the maximum efficiency, relatively small changes in angle are required for large variations in flow rate. Between stator stagger angle settings of 27.8° and 35.8°, a 10 per cent variation in flow rate requires only an 8° angle change. In the regions more distant from the maximum efficiency point, large angle changes are required to handle small flow rate changes.

Figures 31 through 36 also contain plots of 3-stage pressure ratio versus referred flow rate for each stator stagger angle.

As expected, the measured maximum pressure ratio occurred at a referred flow rate between that for maximum efficiency and for surge. It was not possible to determine maxima for the calculated data of AXCO3 because for each case the largest pressure ratio occurred at the flow rate tagged "surge." The program does not compute performance at lower flow rates. The check for surge occurs in subroutine CASCAD. Based on cascade data, Howell stated that unacceptable losses occur at values of $\mathcal{E}/\mathcal{E}_{10}$ greater than 1.25. This conservative criterion is particularly applicable in a design where a wide range of flow rates is not required. However for the purpose of evaluating pressure ratio for an existing machine, the criterion appears to be too restrictive. It would be more advantageous if AXCO3 used the criterion to predict surge but then proceeded to complete the calculations at that flow rate rather than stopping computation.

The measured pressure ratio was in general by 0.25 per cent greater than predicted by AXCO3, and the measured $\triangle P_{3-SA}$ was about 11 per cent greater. Total pressure is relatively simple to measure. The yaw and pitch errors of the 3-hole probe are very small. Any error in total pressure measurement is expected to produce a total pressure lower than expected. Since the predictions are lower at every flow rate, it is possible that the difference in blading between the installed blade profiles and the NACA airfoils, which are represented by Liebleins's data, may be the cause of the difference as was suggested in the discussion of 3-stage efficiency. A summary plot of maximum 3-stage pressure ratio on an expanded scale is presented in Fig. 38. The peak value of maximum pressure ratio occurred at a stator stagger angle of 31.8°

While writing the thesis, an error was discovered in Eq. 1, which converts the reading of the mercury barometer P_{Bar} in in. of mercury to P_A in psfa and corrects for the temperature variation of the specific gravity of the liquid. The incorrect equation

 $P_A = P_{Bar} (0.4928 + T_{Bar} 0.5/10,000) 144$ (psfa) was used. At 70.0°F the constant by which P_{Bar} was multiplied was 71.457 psfa/in. of Hg. Reference 10 lists the specific gravity of mercury sy for the temperature range 0°F to 150°F as

 $sy = 13.638 - 1.354 \times 10^{-3} (T_{Bar}) \qquad (g/cm^3)$ The conversion factor is

$$c_{f} = 69.892 \frac{5y}{13.59}$$
 (psfa/in. of Hg)

At 70°F the correct conversion factor is 69.55, or the atmospheric pressure on which all calculations were based was 3 per cent higher than the actual atmospheric pressure. By Eqs. 3, 4 and 7 the calculated static pressure P_o and air density Q_o at the permanent Pitot-static tube, and the total pressure after the inlet guide vanes P_{tiga} , were 3 per cent higher than actual also. By Eqs. 6, 8 and 10 the calculated velocity V_o , volume flow rate $\sqrt{r_c}$, and referred flow rate \dot{w}_r were 0.983 of the actual values. The calculated pressure ratio P_{r3-s} was 0.998 of the actual value by Eq. 11. By Eqs. 9 and 14 the values of weight flow rate \dot{w} and 3-stage efficiency were calculated to be 1.2 per cent higher than the actual values.

The test results are presented in non-dimensional form in Figs. 39 through 44. Plotted against the flow coefficient ϕ_{av} , the efficiencies follow the same pattern as when plotted against referred flow rate, since Eqs. 10 and 13 differ only by a constant. Figure 45 is a summary plot of the maximum 3-stage efficiciency for each stator

stagger angle versus flow coefficient and is similar to Fig. 37 for the same reason. Figure 46 is a summary plot of maximum pressure rise coefficient for each stator stagger angle. The pressure rise reaches a maximum at a blade angle of 33° and a flow coefficient of 0.475. The curve of corresponding stator stagger angles has an almost constant slope.

Theoretically, the deflection coefficient $\mathcal{T}_{\alpha V}$ represents the change in peripheral flow components in a blade row divided by the peripheral speed. Figure 47 is a stage velocity triangle showing design and off-design conditions in a compressor stage. At the design condition

$$\tilde{c}_{d} = \frac{\Delta W_{ud}}{U} = \frac{\Delta V_{ud}}{U}$$

An assumption in this analysis is that the air leaving angle from a blade row does not vary with incidence. Hence the angles \ll_1 and β_1 remain constant. The relation between the off-design deflection coefficient $\tilde{\iota}'$ and the off-design flow coefficient ϕ' is fixed by similar triangles

$$\frac{1-\widetilde{\iota}'}{1-\widetilde{\iota}_d} = \frac{\varphi'}{\varphi_d}$$

and

$$\mathcal{T}' = I - (I - \mathcal{T}_d) \frac{\Phi'}{\Phi_d}$$

or $\widetilde{\iota}'$ is expected to vary linearly with $oldsymbol{\phi}$.

At flow coefficients greater than that for maximum 3-stage efficiency, calculated deflection coefficients \mathcal{T}_{AV} varied linearly with flow coefficient in Figs. 39 through 44. For most runs the graph of \mathcal{T}_{AV} broke sharply from the linear segment at the maximum efficiency point. For each case the curve continued at a reduced

slope in the region between the break and prior to surge. Experience seems to indicate this identifies a region of incipient stall. As the blades become fully stalled, the nature of the flow changes drastically. It has been suggested that this change is reflected in a sharp increase in the slope of the deflection curve. The author was reluctant to operate the compressor in the region of stall for extended periods of time because of related vibration and noise problems. However a slight upturn of the deflection coefficient curve was apparent at stator stagger angles of 23.8° and 27.8° (Figs. 39 and 40).

The deflection coefficient $\tilde{\mathcal{L}}$ is a measure of work input. It will be necessary to make an approximation for the theoretical power P_{wth} . Equation 11 can be rewritten

$$P_{r3-S} = 1 + \frac{\Delta P_{3-S}}{P_{tiga}}$$
 (psfa)

Making a first order expansion, Eq. 13 can be rewritten

$$P_{\text{wth}} = \dot{w} R_{\text{s}} \frac{\chi}{\chi_{-1}} T_{\text{to}} \left[1 + \frac{\chi_{-1}}{\chi} \frac{\Delta P_{3-S}}{P_{\text{tiga}}} - 1 \right] (\text{ft-lbf})/\text{sec}$$
$$= \frac{\dot{w} R_{\text{s}} T_{\text{to}}}{P_{\text{tiga}}} \Delta P_{3-S} = \sqrt{-2} \Delta P_{3-S} (\text{ft-lbf})/\text{sec}$$

Substituting P in Eq. 12, the efficiency becomes

$$n_{3-s} = \frac{V_c \ \Delta P_{3-s}}{T_{rq} \ \omega}$$

Rewriting Eq. 15

 $\nabla f_c = A \phi_{av} U_{av}$ (ft³/sec)

and introducing Eq. 16 into Eq. 17, there is

$$\mathcal{T}_{av} = \frac{T_{vq}}{3 \rho_{o} U_{av}^{2} A R \phi_{av}}$$

or the deflection coefficient is a direct function of the torque T_{rg} or work input.

Figure 45 is a graph of the $\tilde{\mathcal{C}}_{\alpha\nu}$ which was calculated at maximum 3-stage efficiency for each stator stagger angle. The minimum of these deflection coefficients occurs at the maximum efficiency. At maximum efficiency the minimum work input was required.

SECTION 7

CONCLUSIONS AND RECOMMENDATIONS

It has been shown that maximum efficiency can be achieved for each flow rate. The computer program AXCO3 can be used to predict efficiency within 2 per cent, with an error of 5 per cent in flow rate. Pressure ratio may be predicted within 0.25 per cent.

It is recommended that further measurements be made at increased rotor stagger angles. Inlet guide vane angles should be varied to simulate the effects of preceding blade rows. Blade shapes with higher blade loadings should be tested.

Scatter in the data may be caused by variations in inlet flow and accentuated by oscillations of the pressure gauge. A proposed improved inlet duct is described in Appendix E.

FIGURE I COMPRESSOR INSTALLATION

FIGURE 3 COMPRESSOR CASING

FIGURE 5 ASSEMBLY OF ROTOR IN LOWER CASING

FIGURE 8 DETAIL OF FREE - VORTEX ROTOR

DETAIL OF FREE-VORTEX STATOR

FREE-VORTEX STATOR BLADE FIGURE 10

FIGURE II ROTOR STAGGER ANGLE ADJUSTMENT

FIGURE 12 EXTERNAL STAGGER ANGLE ADJUSTMENT

FIGURE 13 INLET BELLMOUTH

FIGURE 14 INLET PITOT-STATIC TRAVERSE

FIGURE 15 DETAIL OF INLET PITOT-STATIC JRAVERSE

FIGURE 16 THREE-HOLE PROBE DETAIL

FIGURE 18

PERMANENT PITOT - TUBE AND THREE -HOLE PROBE AHEAD OF FIRST ROTOR

FIGURE 19

PRESSURE READOUT INSTRUMENTATION

FIGURE 24 TORQUE METER DURING CALIBRATION

SECTION 9

REFERENCES

 Vavra, M. H., "Aero-Thermodynamics and Flow in Turbomachines," John Wiley & Sons, Inc., New York, N. Y., 1960.

Lieblein, Seymour, "Experimental Flow in Two-Dimensional Cascades," Chapter VI of NASA SP-36, Washington, D. C., 1965.

- Vavra, M. H., "Analysis of Performance of Clark CSN-2 Axial-Flow Compressor for ML-1", Report AGN-VA #26, Aerojet-General Nucleonics, San Ramon, California, November 1963.
- Gibbons, Thomas and Bartels, Harlan B., "An Analytical Investigation of Off-Design Performance in Multi-Stage Axial Flow Compressors" Unpublished Masters Thesis, Naval Postgraduate School, May 1966.
- 5. Bowen, John T., Sabersky, Rolf H. and Rannie, Duncan W., "Theoretical and Experimental Investigations of Axial Flow Compressors (Summary Report)," California Institute of Technology, January 1949.
- Bowen, John T., Sabersky, Rolf H. and Rannie, Duncan W.,
 "Theoretical and Experimental Investigations of Axial Flow Compressors, Part 2," California Institute of Technology, July 1949.
- Alsworth, Charles C. and Iura, Toru, "Theoretical and Experimental Investigations of Axial Flow Compressors, Part 3," California Institute of Technology, July 1951.

- Iura, Toru, and Rannie, Duncan W., "Observations of Propagating Stall in Axial Flow Compressors," California Institute of Technology, April 1953.
- 9. Howell, A. R., "Axial Compressor Design," Rpt. E3946, Royal Aircraft Establishment, Farnborough, England, June 1942.
- National Research Council, "International Critical Tables, Vol. III," McGraw-Hill, 1928.
- Waitman, B. A., Reneau, L. R. and Kline, S. J., "Effects of Inlet Conditions on Performance of Two Dimensional Subsonic Diffusers," <u>Journal of Basic Engineering</u>, Transactions of the A. S. M. E., Sept. 1961, pp. 349-360.

APPENDIX A

CALIBRATION OF INSTRUMENTS

The measuring devices were calibrated to determine their accuracy and precision.

The Berkeley digital counter is located near a Hewlett-Packard digital counter in the control room. At a given flow rate, there was no difference between the two instruments. The Hewlett-Packard device was recently calibrated with a cesium wave length frequency standard in the Standards Laboratory of the Electrical Engineering Department of the Naval Postgraduate School. The speed measured is considered accurate to 0.5 rpm.

The Baldwin-Lima-Hamilton torque meter was calibrated statically as illustrated in Fig. 24. A bar was attached to the drive end of the shaft and was clamped to the stand. A symmetrical lever bar was attached to the rotor end of the shaft. The lever arm is 20.0 in. Two weight pans were adjusted to 1.44 lb. each with lead shot in a plastic bag. The weights themselves were checked on the Toledo Precision Scales of the Cascade Laboratory. On the first run, different readings were obtained while loading and unloading the pans. This problem was overcome in subsequent runs by tapping the stand with a mallet prior to recording the reading. This simulated the vibration of dynamic operation which eliminated any frictional effects. Good agreement was obtained during tests where the loading was increased and decreased. The possibility of temperature effects on the strain gauges was explored in a third test. The torque meter cannot be calibrated while the motor is running, but it was calibrated

immediately after shutdown. The shaft was only slightly warmer to the touch than ambient temperature.

The data of the three calibration runs are shown in Table A-1. The results are plotted in Fig. A-1. Run A-3 revealed no temperature effect. A fourth run was made later for checking purposes and did not reveal any discrepancies. The calibration tests established a constant for the torque meter of 4.1565 foot-pounds of torque per pound reading of the meter. The maximum relative error among the runs is 0.6 per cent. The meter may be read to within 0.03 pounds, or 1 per cent of the meter reading.

The newly acquired low range bourdon tube was calibrated also. Run B-1 was made by using the mercury manometer board in the control room of the Compressor Laboratory. The transsonic turbine test rig was used to provide the pressure difference for the higher pressure range. The present compressor tests required pressure measurements down to 0.6 in. of water. Runs B-3 and B-5 were made at low pressure difference with a Merriam water micro-manometer. Pressure was supplied from a static source.

The data of the three calibration runs are shown in Table A-2. The results are plotted in Fig. A-2. The calculation of velocities was set up using pressure difference in 1b/ft². Measured pressures are therefore very small numbers. An inverse calibration constant was used. The bourdon tube has a constant of 240.423 counts per 1b/ft². The maximum relative error among the calibration runs was 0.12 per cent. The meter may be read to within 5 counts. The meter's servo system tends to overcorrect. In the manual null mode the meter needle tends to wander a similar amount. The five count

reading error amounts to 1 per cent of the velocity head reading in the inlet duct during flow rate calibration. The error is 0.5 per cent of the velocity head reading at the permanent Pitot tube. The error is only 0.05 per cent of the measured pressure difference across the three stages.

The Pitot-static tube used to traverse the inlet duct during flow rate calibration is a modified Prandtl-type tube. Another Pitot-static tube was attached to the traverse shaft and the tubes compared. Sufficient difference existed between the two to justify further tests. The low speed calibration tunnel in the Cascade Laboratory was modified to receive the Pitot-static tube from the inlet duct.

The data of the calibration runs are shown in Table A-3. The results are plotted in Fig. A-3. Each point represents the average of four readings. Run C-3 indicated that the velocity head of the Pitot-static tube from the inlet duct was at most 1.1 per cent less than that of the calibration tunnel. Run C-4 indicated that the static pressure below atmospheric was at most 1.8 per cent less than that of the calibration tunnel. These maximum errors occurred at the lower pressure differences. It is probable that the effect recorded is in part the reading error due to bourdon tube oscillation.

TABLE A-1					
	CALIBRATION O	F BLH TORQUE METER			
RUN	A-2	RUN A-3			
APPLIED TORQUE FT-LB	METER READING LB	APPLIED TORQUE FT-LB	METER READING		
4.167	0.995	19.792	4.745		
8.333	2.005	39.583	9.620		
12.500	i 3.000	59.375	14.540		
16.667	3.985	77.708	18.445		
20.833	4.995	92.708	22.400		
25.000	5.985	109.375	26.345		
29.167	6.980	126.042	30.285		
33.333	7.960				
37.500	8.940				
41.667	9.970				
45.833	10.925	RUN	A-4		
50.000	11.950	FT-LB	LB		
54.167	12.915	19.792	4.77		
58.333	13.930	38.958	9.610		
62.500	14.905	59.792	14.545		
66.667	15.925	76.458	18.510		
70.833	16.935	93.125	22.435		
75.000	17.945	109.792	26.405		
79.167	18.910	126.458	30.370		
83.333	19.970	130.675	31.340		

116

FIGURE A-I

TORQUE

TABLE	A-2
-------	-----

CALIBRATION OF 0-12 in. Hg BOURDON TUBE

	RUN	B-1	RUN	B-3	RUN	B-5
	PRESSURE INCHES OF MERCURY	METER READING COUNTS	PRESSURE INCHES OF WATER	METER READING COUNTS	PRESSURE INCHES OF WATER	METER READING COUNTS
	10.260	174,300	13.978	17.409	14.519	18,218
	8.290	139,450	12.459	15,518	12.914	16,119
	7.445	125,750	11.062	13,784	11.397	14,222
	6.065	102,900	9.853	12,276	9.913	12,368
	5.235	88,200	6.993	8,737	8.471	10,560
	4.440	74,800	6.198	7,738	6.989	8,715
	4.035	67,950	4.992	6,230	5.471	6.826
	3.320	57,100	3.996	4,993	4.493	5,613
2	2.415	40,900	3.036	3,794	3.470	4,398
	1.000	16,300	2.195	2,741	2.401	2,994
*			1.602	1,997	1.512	1,885
			0.785	982	0.620	762
			4 1			
			1	i		
1-		1		- ta	L	

TABLE A-3

TOTAL PRESSURE MINUS STATIC PRESSURE		STA BELO	TIC PRESSURE
PROBE	TUNNEL	PROBE	TUNNEL
2486.25	2508.75	2450.0	2455.0
2157.5	2182.5	2190.0	2190.0
1413.75	1421.25	1422.5	1425.0
L002.5	1011.25	1087.5	1012.5
793.75	797.5	795.0	810.0

CALIBRATION OF INLET PITOT-STATIC TUBE

APPENDIX B

FLOW RATE CALIBRATION DETAILS

Particulars of the flow rate calibration scheme which may be of special interest to a restricted number of readers are included in this Appendix. Section B-1 gives details of the construction and testing of the variable length capillary damping devices. Section B-2 gives a listing of the program ONRFLO, and Section B-3 presents sample output of program ONRFLO.

B-1 Variable Length Capillary Damping Devices

The problem of oscillating pressures at the traversing Pitotstatic tube in the inlet has been described. Pressure oscillations in the tubing were damped with alternating sections of smaller and larger diameter flow passages. Figure B-l is a picture of such a device. The device consists of three lengths of needle stainless steel tubing, of 0.020 in. inside diameter, which are 4 in., 6 in., and 8 in. long. They are connected as shown to polyethylene tubing by brass "T's." By clamping the tubing at various positions it is possible to obtain total capillary lengths of 4 in., 6 in., 8 in., or 18 in. Figure B-2 is a schematic showing the operation of the device.

Two variable length damping devices were used, one each in the total and static pressure lines from the traversing Pitot-static tube in the inlet. Two effects of these devices were observed on velocity head, the difference between total and static pressure. As the length of capillary tube was increased, the fluctuation of the pressure gauge was decreased. But as the length of capillary tubing was increased,

the time to come to a steady reading was also increased. Table B-1 presents the results of tests of various lengths of capillary tubing.

Immediately before taking the velocity head reading the traverse probe was placed at a new radial position. This task took about 20 sec. to perform. The best precision for a time to damp of 20 sec or less was used. The combination of a total pressure capillary length of 18 in. and a static pressure length of 8 in. satisfied this requirement.

Later in the investigation, when the simplified pressure selection system was used, it became possible to use both 18 in. lengths of tubing and have a time to damp to a steady reading of less than 20 sec. It appears that the 12-channel pressure scanners increased the time required for the system to stabilize. This was probably due to admittance of air from other channels during sequencing of the scanner. However as the survey progressed, flow rate measurements were made at lower flow rates. As the machine was operated nearer to the stalled condition, greater pressure oscillations were observed. The meter precision was no better than \pm 15 counts, and sometimes as much as \pm 50 counts.

B-2 Program ONRFLO

The flow rate calculations described in Section 3 were accomplished by program ONRFLO which is included as Table B-2. Since the calculations are straightforward and have been described earlier, they will not be repeated here.

The input format is as follows:

Card 1:	NCASE	run number (arbitrary)
(17,3F7.2)	PBAR	reading of barometer (in.)
	TBAR	temperature at barometer (^O F)
	то	temperature at inlet screen ([°] F)
Cards 2, 3, and 4:	R	the 23 radii at which data were
(8FL0.2)		taken (17.75, 17.5 0 ,4.00, 0.00,
		4.0017.50,17.75) (in.)
Cards 5 through 50:	QI	velocity head in inlet duct (counts)
(4F7.0)	PSI	static pressure with reference to
		atmospheric in inlet duct (counts)
	QO	velocity head at permanent Pitot-
		static tube (counts)
	PSO	static pressure with reference to
		atmospheric at permanent Pitot-
		static tube (counts)

The radii of cards 2, 3 and 4 are repeated internally to account for the cross traverse. Cards 5 through 27 introduce measurements made at the data points for one traverse, and data for the cross traverse are introduced on cards 28 through 50.

B-3 Output of ONRFLO

Table B-3 is a sample of the output of ONRFLO. It is for the final calibration, run 14. The first data block is a list of input data. For each point on the two traverses, QI, PSI, QO, and PSO are listed. The second data block is a list of computed velocities VI, VO, and VIAD. The third block shows how the "no boundary layer"

flow rate, VFT, is computed by summing the product of VA and A. The fourth block shows how the flow rate deficiency, VFD, is computed. It lists the inputs to and outputs from SUBROUTINE QTFE, which performs the integration by the trapezoidal rule. The final statements list the final computed flow rate VFC and the final calibration constant CCC.

FIGURE B-I VARIABLE LENGTH CAPILLARY DAMPING DEVICE

FIG. B-2

PRECISION & TIME TO DAMP FOR VARIOUS LENGTHS OF CAPILLARY TUBE IN TOTAL AND STATIC PRESSURE LINES.

CAP. LE	NGTH IN.	PRECISION,	TIME TO DAMP TO
TOTAL	STATIC	+ COUNTS	STEADY, SEC.
18	18	l	45
18	8	5	20
18	6	8	10
18	4	10	5
8	18	5	45
8	8	5	35
8	6	10	20
8	4	10	5
6	18	5	30
6	8	10	15
6	6	10	10
6	4	20	10
4	18	15	30
4	8	25	15
4	6	30	10
4	4	40	8

TABLE BI

22/56/36		
$E = 6722\theta$	VIAD(38))/4. VIAD(38))/4.	
DAT	<pre>AR.T3AR.T0); AR.T3AR.T0); AR.T3AR.T0); B*513.7); API) 01/P0) 01/P0) .vIAD(N)) .vIAD(33) + + VIAD(31) + VIAD(31) + + VIAD(31)</pre>	
NIVW	<pre>% % % % % % % % % % % % % % % % % % %</pre>	
, Mui U	$ \begin{array}{c} A A A A A A A A$	RITE(6,749)
VELU	H H V W 4 N O V - H V W 4 N O V - T 3 3 3 T O T 4 O O O C 3 Y C 3 Y C 3 Y C 3 Y C 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3
<u>ن</u> ت 		
2 >		
FUATRA	00000000000000000000000000000000000000	0047

Table B-2. Listing of Program ONRFLO

22/56/36				LABORATORY 1.//5X,11HR	HPROBE VEL HHEAD, COUNT URE, COUNT %//5x,11HRA
DATE = 67228	<pre>vFT) vFT) vIAD(30) + vIAD(40))/4. vIAD(29) + vIAD(41))/4. vIAD(27) + vIAD(41))/4. vIAD(25) + vIAD(45))/4. vIAD(25) + vIAD(45))/4.</pre>		(FD(N))	E SCHOOL TURBOPROPULSION UMPRESSOR FLOW RATE CALIB	*,7X,12HINLET STATIC,7X,14 HCENTERLINE, INCHES,5X,12H HHEAD, COUNTS,6X,16HPRESS COUNTS,6X,16HPRESS
ACD C MAIN	TE(6,756) =0. N = 1,5 N = 4(N) * VA(N) = VFT+VF(N) = VFT+VF(N) = VFT+VF(N) = VFT+VF(N) = VFT+VF(N) = VFT+VF(N) = VFT+VF(N) = (VIAD(5) + VIAD(19) + VIAD(21) + VIAD(21) + VIAD(22) + VI	9)=0. 9 N=1,9 N = VA(5)-VB(N) 10 N=1,8 5+N N)=VD(N)*R(K)*2.*3.14159/12. 9)=VD(9)*18.*2.*3.14159/12.	T = 0 T F E (H, VR, VFU, NDIM) T E (6, 759) T E (6, 750) 12 N=1,8 5+N T E (6, 761) (R (K), VD(N), VR(N), V = VFD(9) = VFT-VFF = VFD(9)	<pre>=VFC/VUAV TE(6,759)(VFF,VFC,CCC) MAT(17,3F7.2) MAT(14F7.0) MAT(4F7.0) MAT(23X,52HNAVAL POSTGRADUAT 23X53H0.N.R. 3-STAGE AXIAL C 23X53H0.N.R. 3-STAGE AXIAL C</pre>	JS FROM,7X,14HINLET VELOCITY FY,7X,12HPRGBE STATIC/1X,18H 6X,16HPRESSURE, COUNTS,6X,12 MAT(F13.2,4420.0) MAT(F11,21X,38HCALCULATED VE MAT(1H1,21X,38HCALCULATED VE
•	2>D>>30 &>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	20201122112 2020222212) - 2 C C C C C C C C C C C C C C C C C C	FOR FOR
LEVEL	ω	9 10	12	7 001 7 7 00 7 7 00 7 9 0 7 0 1	752
9					
1 <					
LATRAN	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	0 000088821 0 0000887575 0 000088757575 0 0000088757575 0 0000088757575 0 0000088757575 0 0000088757575 0 0000088757575 0 000008875757575 0 000008875757575 0 0000088757575757575757575757575757575757	0 C 8 9 C 0 9 0

22156136	/IX, IBHCENT ITY, BOUNDAR ITY, BX, 5H A	PROBE VELOC CONSTANT IS AL VOLUME F IS ,F8.4,2	OUNDARY LAY ,9HFLOW RAT RAND,11X,10		22/56/36		
0AT = 672.28	CE.11X.14HADJUSTED INLFT X.SHVELGCITY.12X.BHVELDC OLUME FLOW RATE ASSUMING ECTOR.4X16HAVERAGE VELOC 5HTOTAL FLOW RATE/)	<pre>- + F10.3,5X,25HAVERAGE DAFY LAYER" CALIBRATION ONU / FOOT PER SECOND) CIENCY = + F8.3,5X,25HFIN NAL CALIBARTION CONSTANT</pre>	HUL PER SECUND) UME FLOW DEFICIENCY IN B UCITY,12X,8HVALUE DF,12X HOEFICIENCY,10X,9HINTEG		DATE = 67228		
NIVA	1.2%, 541 vLET, 14%, 54 FRO CHES, 7%, 84 VELOCITY, 12 .2, 3F 20.3) X, 74 HCALCULATION OF V ISIS IN INLET//3X,64S SECTUR FLOW RATE,5X,1	4F18.3) X,19HVULUME FLOW RATE 3//1X,48H1HE "NO BOUN 39HCUBIC FEET PE& SEC X,25HVOLUME FLOW DEFI X,FIC.3//1X,34H1HE FI	FEEL FEE SECUND / FU 55HCALCULATION OF VOL RADIUS FRCM, 10X, 3HVEL NTERLINE, INCHES, 6X, 11	.2,3f20.3)	QTFE .	QTFE(H,Y.Z.NDIM) Y(9),Z(9),Z+4,3,1 0IM	нн*(Ү(І)+Ү(І-І)) L Д2
- J , MLC U	1010S FROM 2 FFLINE FCRMAT(F13 FCRMAT(F13 FCRMAT(//) 2 FCRMAT(//) 2 FCCRMAT(//) 2 FCRMAT(//) 2 FCCRMAT(//) 2 FCCRMAT(/	7 FORMAT(16, 8 FORMAT(7/1 111Y = , F8. 2 , F8.4,2X, 9 FURMAT(7/1 110w KATE =	ZX, 59FCUBLC FURMAT(9X, 1EK//5X, 11H 2E/1X, 18HCE	E SETURN 11 FI3	0, Map 0	SUBRUUTINE DIMENUTINE SUM2=0. If (NDIM-1) IHH=.5*H DO 2 5*H DO 2 5*H	SUMI = SUM2 SUM2 = SUM2 SUM2 = SUM2 Z(NDIM) = SUM FRETURN = SUM
Ιν G Lενει	755	201 201 201	760	192	IV G LEVEL		
FUNISAN	0000 1000 1000 1000 1000 1000 1000 100	0055 0095 0095	1500	0000 0000 0000 0000 0000 0000 0000 0000 0000	FCRFRAN	0000000 000000000000000000000000000000	00000000000000000000000000000000000000

Table B-2. Listing of Program ONRFLO (cont.)

	PROBE STATIC PRESSURE, COUNTS 2465. 2490. 2495. 2495.	22222222222222222222222222222222222222	00000000000000000000000000000000000000	2000 200 200 200 200 200 200 200 200 20	00000000000000000000000000000000000000	10000000000000000000000000000000000000
N = 1200 R.P.M.	PROBE VELOCITY HEAD, COUNTS 1785. 1795. 1755.	1775 1775 1775 1775 1780	1770. 1760. 1795. 1780. 1780.	1785 1785 1785 1785	18810 18810 17660 17600 17660 17660 17660 176600 176600 176600 176600 176600 176600 176600 176600 1766000 1766000 1766000 17660000000000	1780 1775 1780 1780 1800 1795
	PRESSURE, COUNTS 825. 865. 860. 870.	00000000000000000000000000000000000000	00000000000000000000000000000000000000	∞∞∞∞∞∞∞∞ −1∞m000000000000000000000000000000000000	90099999999999999999999999999999999999	
TA FUR KUN 14	INLET VELOCITY HEAD, COUNTS 545. 605. 665. 685.	7000 7250 7250 7250	7400 7400 7400 7600 7600 7600 7600 7600	00000000000000000000000000000000000000	2000 2000 2000 2000 2000 2000 2000 200	5666640 5666640 5666600 56666000
INPUT DA	CENTERLINE FROM 17.75 17.50 17.25 17.25 17.25	00000000000000000000000000000000000000	00050505050 0000505005 0000505005 0000505005 000505050 00505050 00505050 0050505050 0050505050 0050505050 005050505050 005050505050 0050505050 0050505050 0050505050 0050505050 0050505050 0050505050 0050505050 0050505050 0050505050 00505050 00505050 00505050 00505050 005050 005050 005050 005050 0050 005050 000000	11111111111111111111111111111111111111		146620 17720 17720 17720 17720 17750

Sample Output of Program ONRFIO-Input for Run 14

Table B-3.

NAVAL POSIGRACUATE SCHOOL TURBUPRUPULSION LABORATORY

C.N.K. 3-STAGE AXIAL COMPRESSOR FLOW KATE CALIBRATION

ADJUSTED VELOCI SECOND ≻ PROBE PER FEET CALCULATED VELOCITIES, LUCITY i.L. > FRUM INCHES

Ē

Z Z

NONDACOCOCOCONONONAL . NZ NZ AC I RL I

αü ENT

 \odot

Run for Program ONRFLO-Velocities Sample Output of B-4.

Table

14

	1

•

		PER SECOND	1		
LET UW RATE	64 622 0000 0000 0000	ECOND / FOOT	<i>~</i>		ER SECUND for Run 14
EXISTS IN IN Total Fl	40. 112. 359.	9.852 C FEET PER S	R FLOW RATE DEFICIENC	0.00 0.014 0.042 0.042 0.155 0.8806 1.8806	351.644 OND / FOOT P ration Constant
NU BOUNDARY LAYER SECTOR FLOW RATE	4,4,4,4 36,155 71,655 139,800 139,800	ROBE VELCCITY = 7 IT IS 4.4959 CUBL	ICY IN BOUNDARY LAYE VALUE OF INTEGRAND	0.0 1.337 0.649 0.649 2957 2957 2957 2957 2957 2957 2957 295	VOLUME FLOW RATE = CUBIC FEET PFR SEC of Program ONRFLO-Calib:
RATE ASSUMING AREA	0.087 1.698 2.0996 2.1996	AVERAGE P ATION CONSTAN	FLOW DEFICIEN ITY ENCY	54001000 040010000	359 FINAL IS 4.4037 Sample Output
VOLUME FLOW	51. 7493 51. 7499 51. 0572 50. 052	= 359.003 LAYER" CALIBR	ON JF VOLUME VELOC	00000	IENCY = 7. TION CUNSTANT Table B-5.
CALCULATION DF SECTUR AVFRA	- ₩ 40	VOLUME FLOW KATE THE "NO BOUNDARY	CALCULATI CALCULATI CENTERLINE, INCHES	0505050505 00050005 999997777 11111111	VOLUME FLGW DEFIC THE FINAL CALIBAK

APPENDIX C

PERFORMANCE MEASUREMENTS

It was decided to take flow measurements at the mean streamline, using the radial survey holes. The assumption was made that measurements made at this point accurately represented the flow in the entire flow annulus. The truth of the assumption is verified in Section C-1. Section C-2 presents details concerning the data reduction program ONRETA.

C-1 Verification of Assumptions

The assumption that measurements made at the mean streamline using the radial survey holes accurately represent the flow in the entire flow annulus was verified in three ways. The total pressure measured at the mean radius was shown to be nearly equal to the integrated average of total pressure at each radius. It was demonstrated that the total pressure measured at the peripheral location of a radial survey hole was nearly equal to the integrated average of total pressure at each peripheral location in a blade channel. The flow was shown to be nearly axisymmetric.

Concerning the radial variation of total pressure, the existence of a boundary layer at the outer radius in the inlet has already been shown. It was further shown that a boundary layer existed ahead of the first stage and behind the last stage. With the stator stagger angle at 27.8° and the flow rate at about 400 ft³/sec., a radial traverse was made at the radial survey hole labeled 37°27'30" in survey plane 8 of Fig. 7. Data points were established each 0.3 in.

from a radius of 11.1 in. to 18.0 in. After recording the barometric pressure P_{Bar} and ambient temperature T_{o} the following measurements were taken:

The total pressure at the inner radius could not be measured but was assumed to be the static pressure at ll.l in. With the relations listed on p. 35 these measuring data establish the following quantities:

$$P_{A} = P_{Bar} (71.467)$$
 (psfa) (1)

$$T_{to} = T_{o} + 459.7$$
 (°R) (2)

$$P_{tds} = P_A + \frac{P_{td}}{240.423}$$
 (psfa) (3)

$$P_{sda} = P_A + \frac{P_{sd}}{240.423}$$
 (psfa) (3)

With the assumption that the total temperature after the third stator T_{td} is nearly equal to the inlet total temperature T_{to}

$$P_{d} = \frac{0.002378}{(14.696)(144)} \frac{P_{sda}}{T_{to}} = \frac{P_{sda}}{T_{to}} (5.82 \times 10^{-4}) (10 \text{ sec}^2/\text{ft}^4)$$
(4)

$$g_{d1} = \frac{g_d}{240.423}$$
 (psf) (5)
$$V_{d} = -\sqrt{\frac{2 q_{dI}}{P_{d}}} \qquad (ft/sec) \qquad (6)$$

The average total pressure was calculated from the integral expression

$$\overline{P_{tda}} = \frac{\int_{10.8}^{18.0} 2\,\pi V_d \frac{r}{12} P_{tda} \frac{dr}{12}}{\int_{10.8}^{18.0} 2\,\pi V_d \frac{r}{12} \frac{dr}{12}}$$

Both integrations were performed by the trapezoidal rule. Figure C-1 is a graphical representation of the integration. The integrated average total pressure $\overline{P_{tda}}$ was 2184.20 lb/ft² while the total pressure measured at the mean streamline was 2184.34 lb/ft². The relative error between the two pressures is 0.006 per cent. A second radial survey was made at the radial survey hole labeled $149^{\circ}57'30"$ in the plane called S. P. 8 on Fig. 7. The integrated average pressure for this survey was 2183.92 lb/ft². The total pressure measured at the mean radial position was 2184.32 lb/ft². The relative error between the two pressures was 0.018 per cent. Since the pressure measured at the mean radius was nearly equal to the integrated average of pressure at each radial location, mean streamline values were used to measure compressor performance.

The traverse carriage was used for peripheral surveys. Since it would be necessary to remove the first stage rotor to survey in the axial plane ahead of the first stage, the investigation was confined to the plane behind the third stage stator where measurements could be made simply. The locations of the radial survey holes with reference to the indicated meridional angle of the carriage are shown in Fig. 23.

There are 32 stator blades. Each blade channel is 11.25° in peripheral direction. With the stator stagger angle at 27.8° a peripheral survey was made at the mean radius, 14.4 in. The average reading over the entire 15° of carriage travel was 9256 counts. The reading taken at the radial survey hole marked 37°27'30" on Fig. 7 was 9246 counts, a relative error of 0.11 per cent. The average over the first 11.25° of carriage travel, representing one blade channel, was 9218 counts, a relative error of 0.30 per cent. Figure C-2 illustrates the results of this mean radius survey. A second survey was conducted near the hub at a radius of 11.2 in. The average pressure reading of the traverse was 9532.47 counts. The pressure measurement at the radial survey hole was 9569.23 counts. A relative error of 0.36 per cent existed between the two pressures. On the basis of the surveys made behind the third stage stator the measurements taken at the radial survey taps were accepted as accurately representing the flow in the entire blade channel.

An investigation of the axisymmetry of the flow was conducted. The results are tabulated in Table C-1. The total pressure behind the inlet guide vanes, P_{tig} , was measured at eight different radial survey holes in plane S. P. 2 of Fig. 7. The average reading of P_{tig} was 578.1 counts. The nearest reading to the average was 573.9 counts, taken at the hole labeled $33^{\circ}45^{\circ}$. This hole was used for all readings of P_{tig} . The relative error was 0.73 per cent. The average of readings taken behind the third stage stator P_{td} was 10, 821.5 counts. The nearest reading to the average was 10, 810 counts, taken at the hole marked $37^{\circ}27'30''$ on Fig. 7. This hole was used for all readings of P_{td} . The relative error was 0.10 per cent. Within the measurement

capability of the instrument, the flow was considered axisymmetric and the most representative readings have been used.

C-2 Program ONRETA

The data reduction described in Section 4 was accomplished by Program ONRETA (Table C-2). Since the calculations are straightforward and have been described in the body of the thesis, they will not be repeated here.

The input format is as follows:

Card 1:	NCASE	run number (arbitrary)
(218,4F8.2)	NRUN	number of data points per run
	PBAR	reading of barometer (in. of Hg)
	TBAR	temperature of barometer ([°] F)
	RSTAG	rotor stagger angle (43.8°)
	SSTAG	stator stagger angle (various ⁰)
Card 2:	то	temperature at inlet screen (^O F)
(F8.1,4F8.0	QO	velocity head at permanent Pitot-
F8.1,F8.2)		static tube (counts)
	PSO	static pressure with reference to
		atmospheric at permanent Pitot-
		static tube (counts)
	PTIG	total pressure with reference to atmo-
		spheric ahead of first rotor (counts)
	DELP	pressure rise across the 3 stages
		(counts)
	ТАСН	reading of the speed counter (rpm)
	TRAW	reading of the torque meter (1b)
Cards 3 through (NRUN -	1): rep	eat of Card 2 for remaining data points

The first five entries on cards 2 through (NRUN - 1) are the arithmetic average of four readings taken two minutes apart. The last two entries are the average of two readings taken five minutes apart.

The first section of program output is a printout of the input data. The second section is the calculated data for the run. The third section is the calculated nondimensional coefficients.

Tables C-3 through C-13 present the results of runs 1 through 11.

INVESTIC	ATION OF AXISYN	METRY OF FLOW		
TOTAL PRESSURE INLET GUIDE V	BEHIND ANES	TOTAL PRESSURE THIRD STAGE S	BEHIND STATOR	
RADIAL SURVEY HOLE	READING	RADIAL SURVEY HOLE	READING	
26 [°] 12'30''	10,860	11 ⁰ 15'	564.2	
* 37 ⁰ 27'30''	10,810	22 [°] 30'	587.2	
93 ⁰ 42 ' 30''	10,810	* 33 ⁰ 45'	573.9	
149 ⁰ 57'30''	10,805	45 ⁰	601.5	
AVERAGE	10,821	56 ⁰ 15'	557.3	
		67 [°] 30'	565.9	
* READING CLOSEST T	O AVERAGE	76 ⁰ 45'	611.6	
	e en	88 ⁰ 7'30''	563.2	
		AVERAGE	578.1	

PAGE CCA1 01/01/09 67251 11 DATE V I A M C A D D Ó 11 13 700 12 LEVEL ن \geq FCLTRAN 0001

Table C-2. Listing of Program ONRETA

5					
0	ALLA	B C		45	
2	2000	HV		91	
2		+02) Dru) Dru		
-		XAT	TUT	×ш	
0	H4HZ	• I d		< <u>.</u>	
	Ou +O	TI		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	SE • •		10.4 ×	mõ	
	1 ~×		XQ4		
	L MO L	T 4.	LUX -	zບ	
	OAR +	5		D L L L L L L L L L L L L L	
-	100 ·	XL	ш ю́ц	Ξu	
5		α <u>α</u>		СС СС	
~	x xu	•0a	200	U.I	
9	ב קרב ני		E L	22	
11	CUZ	HE:	· 2005		
ш	DONA	T ta	n n n n n n n n n n n n n n n n n n n	· • Ē 6	
H	Ωm⊢α T∝uuu	SX ·			
ã	JA ZO	H/F	•I•I	Ju - O	
	V D D V	- 00 A Z + m ⊒		a ►ЩΖ MMUU	
	HO AH	XEC	ZX •F	• UIII	
	HE VI	- 0⊞C			
	DA PU				
		E9×	-62.5		-
	A A X O	U C C C C C C C C C C C C C C C C C C C			-
	-FU-I	JEV	ו Ш⊳⊁	4-04	2
	1400°				-
	WOHZ .	H-H	.OIIC) · El O F	-
		÷×c) • – ° u	-
٩Þ	-AW	×41		MOIL	<u>ل</u>
«	• D • A 30	- 22 -		ULZ -C	č-
	uzαuu	×Ш~ х — с~	$(\bullet) \bigcirc \bullet \triangleleft$	(•O • (mZ×u	_ ↓
	UNZAN-	1× LU	THHI	•Ira	ŝ
	- うう・ 「 しょう。 しょう。			-mrv	\sim
	LXIOQU	IIZ	L D X	L .ZV	n m
	400 FU-	1 • 4 C			5
				••• <u>•</u> <u>•</u> <u>•</u> <u>•</u>	•
	wImzo	100	0 I -	いしく目の	1.6
0		21.2		モノ 王 つ	
9	FF/axu	J-XG	FF •×F	-HHOX	$\leftarrow z$
5	241-10C			200 22	ND N
	ARAX	1 × -	AAAmr	aa3H	a FO
ô			DDAG -		
	-Nm3	r ^) (^	J.O. O
Ш.	201	50	22	22	9.0
2	~~	17	~~	~~	7
1		-			0.
9					
-					
2					
_					
Z Z					
× I	10	00	50		0,010,0
¥	00	0	00	00	0000
Ľ.	SC	0	00	00	0000

Table C-2. Listing of Program ONRETA (cont.)

NAVAL PCSTCRADUATE SCHOOL TURBOPROPULSION LABORATORY

C.N.R. 3-STAGE AXIAL COMPRESSOR, 3-STAGE EFFICIENCY

• F •		TORQUEMETER	30.62 31.66 32.87		3-STAGE EFFICIENCY	0.92725 0.94138 0.94319		RE COEFFICIENT	0.2278 0.2451 0.2457
6.7 DEGREES		TACHOMETER	1190.5 1190.5 1189.5		JMFGA P AD./SEC.	124.669 124.616 124.564		NT PRESSUI	
30.02 AT T	SER ANGLE 27.8	DELP	8595. 9265. 10110		TORQUE FTLB.	127.272 131.345 136.624		CTION COEFFICIE	0.2457 0.2603 0.2439
IKIC PRESSURE	STATOR STAG	PTIG.	835. 815. 750.		PRESSURE RATIO	1.01668 1.01798 1.01962	1	NCY DEFLEC	
BAKEMF	8	PSTATIC,	2825. 2825.		PTC-PTIG LB./SQ.FT.	35.749 38.536 42.051	LIENTS FCR RUN	STAGE EFFICIE	C 9273 C 9414 C 9414
IA FUK KUN I	AGGER ANGLE 42.	VELOCITY HEAD, COUNTS	2470. 2340. 2135.	ATA FCK RUN 1	VCLFLCRATE CU.FT./SEC.	413.0C5 401.422 383.498	NSIONAL COEFFIC	FICTENT	03 34 72
INPUL CA	RCTOR ST	TENP	72.3	CUTPUT D	REFERREC FLOW RATE	48.354 47.055 44.937	NON-0IME	FLOW COEF	0.561

Table C-3. Output of Program ONRETA, Run 1, Stator Stagger Angle = 27.8°

NAVAL PUSTGRADUATE SCHOGL TURBOPROPULSION LABORATORY

TORQUEMETER 3-STAGE EFFICIENCY 0.94128 0.94745 0.94499 0.94499 DEGREES,F. ACHOMETER R.P.M. RAD./SEC. 124.595 124.5554 124.501 11189.8 11189.4 11188.9 74.2 EFFICIENCY æ • 27 AT TORQUE FT.-LB. 136.250 137.996 138.827 139.742 COUNTS 10087. 10545. 10785. 11015. STATOR STAGGER ANGLE 3-STAGE 30.04 3-STAGE AXIAL COMPRESSOR, BARCMETRIC PRESSURE LL, 1.01956 1.02045 1.02091 PRESSURF RATIO PTIG. 727.725555555 Ũ PTD-PTIG B./SQ.FT. PSTATIC. 41.955 43.860 44.858 45.815 2870 2757 26537 25533 _ α 0.N.K. 42. \sim \sim HEAD, COUNTS . VOLFLORATE CU.FT./SEC 382.660 373.177 366.044 360.279 STAGGER ANGLE DATA FOR RUN NU X 2130 2030 1948 1896 CATA FOR CUTPUT ш INPUT RCT OR REFERREC FLOW RATE 44.877 42.806 42.908 42.260 TEMP, DEG. F. 70.5 71.0 70.3

•80 27. Stator Stagger Angle = ູ່ Output of Program ONRETA, Run Table C-4.

COEFFICIENT

PRESSURE

DEFLECTION COEFFICIENT

2

COEFFICIENTS FOR RUN

NCN-DIMENSIONAL

COEFFICIENT

FLOW

0.5558 0.5519 0.5416 0.5330

3-STAGE EFFICIENCY

C.9413 C.9475 C.9450 C.9433

0.29360.29360.39210.3086

0.2664 0.2781 0.2855 0.2911

NAVAL PCSTGRADUATE SCHOOL TURBOPROPULSION LABORATORY

TORQUEMETER PRESSURE COEFFICIENT 3-STAGE EFFICIENCY 0.93285 32.93 DEGREES,F. TACHOMETER R.P.M. R AD. / SFC. 124.512 1189.0 74.9 C.N.R. 3-STAGE AXIAL COMPRESSAR, 3-STAGE EFFICIENCY DEFLECTION COEFFICIENT STATOR STAGGER ANGLE 27.8 AT TORQUE FT.-LB. 136.874 133.548 COUNTS 1027. 30.05 BARDMETRIC PRESSURE PRESSURE RATIO 1.02137 COUNTS 607. 550. ĉ 3-STAGE EFFICIENCY NON-DIMENSIONAL COEFFICIENTS FCR RUN PTD-PTIG LB./SQ.FT. PSTATIC, COUNTS 45.865 2347. FCTUR STAGGER ANGLE 42.8 m ~ VELOCITY HEAD, COUNTS VOLFLORATE CU.FT./SEC. 348.579 328.765 CUTPUT DATA FCR RUN INPUT CATA FOR RUN 1765. FLCW COEFFICIENT REFERREC FLOW RATE TEMP. DEG. F. 40.823 72.C

Output of Program ONRETA, Run 3, Stator Stagger Angle = 27.8° Table C-5.

0.2921

0.3131 0.3239

0.9329

0.5157

NAVAL PCSTGRADUATE SCHOGL TURBOPROPULSION LABORATORY

TORQUEMETER POUNDS COEFFICIENT 3-STAGE EFFICIENCY 0.91681 0.94022 0.93116 0.93412 0.89788 00000 8286790 82867900 8687900 DEGRFFS,F. ш PRESSUR • TACHOMETER R.P.M. RAD./SEC. 24+5554 24+5524 24+5502 24+5502 24+5502 24+5502 1189.4 1189.1 1189.0 11139.0 75.6 EFFI CIENCY COFFFI CIENT е • ΔT 23 140.822 143.607 1443.607 1440.854 140.4900 138.120 TORQUE FT.-LB. COUNTS 2836 2955 3073 3194 9730. 10350. 10683. 10619. ANGLE 3-STAGE 00000 29.92 DEFLECTION STATOR STAGGER BARDMETRIC PRESSURF COMPRESSOR, PRESSURE RATIO 1.01894 1.02015 1.02080 1.02125 1.02091 PTIG, COUNTS 780. 757. 707. 593. 4 **FFFICIENCY** 3-STAGE AXIAL RUN C.9168 C.9168 C.9402 C.9312 C.93412 C.8579 PTD-PTIG B./SQ.FT. STATIC. FOR 29200 2920 2920 2920 2960 3-STAGE COEFFICIENTS ۵ _ œ ·γ·ν· . 42. 4 4 HEAD, COUNTS . VULFLORATE CU.FT./SEC 399.133 392.458 379.8880 361.739 347.597 ш DATA FCK RUN KUN ANGL 292 207 880 740 ENT NON-DIMENSIONAL NPUT CATA FUR STAGGER NUNH-CCEFFICI 0.558063 558263 558263 0.5582630 0.5582630000000000000000000000000000000000 CUTPUT REFERREC FLOW RATE CTOR TEMP. 17777 20002 020260 FLCW ù£. 2

08.

23.8

11

Stagger Angle

Stator

Run 4,

Output of Program ONRETA,

c-6.

Table

PCSTGRADUATE SCHOOL TURBOPROPULSION LABORATORY NAVAL

TURQUEMETER POUNDS PRESSURE COEFFICIENT 3-STAGE EFFICIENCY 0.92405 0.936405 0.93599 0.91371 0.86446 84800 84800 87800 87800 0.2895 0.2895 0.2895 0.2895 DEGREES,F. 23.8° ACHOMETER R.P.M. RAD./SEC. 124-543 124-543 124-491 124-522 124-522 11189.3 11189.3 11189.8 11189.5 П Stator Stagger Angle 75.6 EFFI CIENCY DEFLECTION COEFFICIENT 23.8 AT TORQUE FT.-LB. COUNTS 143.399 145.477 144.854 140.074 136.458 0.2913 0.3007 0.3104 0.3168 0.3252 STATOR STAGGER ANGLE 10137. 10587. 10917. 10865. 3-STAGE 30.06 5 Output of Program ONRETA, Run COMPRESSOR . P.ARCMETRIC PRESSURE PRESSURE RATIO 1.01964 1.02051 1.02105 1.02105 1.022044 PTIG: 750 737 6550 5550 õ S EFFICIENCY 3-STAGE AXIAL RUN 0.9368 0.9368 0.9368 0.9368 0.81370 8645 PTC-PTIG 9./SQ.FT. COUNTS, COEFFICIENTS FOR 42.163 45.373 45.373 45.151 45.151 881 2015 24003 24403 24403 3-STAGE ۵ _ x Table C-7. 42. . N . R . ŝ Ś HEAD, COUNTS . ωU 393 - 260 387 - 260 373 - 932 354 - 544 336 - 670 NUX ANGLE VOLFLORAT CU.FT./SE NNY 2249 2169 2021 1815 DATA FOR NON-DIMENSIONAL COEFFICIENT CATA FOR STAGGER CUTPUT REFERRED FLOW RATE INPUT RCTOR . TENP. DEG. F. 1744 1744 1744 1744 1744 FLOW 0

NAVAL POSTGRADUATE SCHOOL TURBOPROPULSION LABORATORY

000.

= 31

Angle

Stator Stagger

Run 6,

of Program ONRETA,

Output

က က က

Table

~
<u>a</u>
0
⊢
4
\sim
u
C
c
1
1
-
~
<u> </u>
<u> </u>
-
\supset
0
õ
\simeq
٥.
\frown
~
<u></u>
Υ.
\supset
<u> </u>
_
0
100
1001
HOOL.
СНООГ
SCH00L
SCHOOL
E SCHOOL
LE SCHOOL
TE SCHOOL
ATE SCHOOL
LATE SCHOOL
DUATE SCHOOL
ADLATE SCHOOL
ADUATE SCHOOL
RADUATE SCHOOL
CRADUATE SCHOOL
TCRADUATE SCHOOL
STGRADUATE SCHOOL
CSTGRADUATE SCHOOL
CSTCRADUATE SCHOOL
PESTGRADUATE SCHOOL
PCSTCRADUATE SCHOOL
L PCSTGRADUATE SCHOOL
AL PESTGRADUATE SCHOOL
AL POSTGRADUATE SCHOOL
VAL PCSTGRADUATE SCHOOL
AVAL PESTGRADUATE SCHOOL

	•		TORQUEMETER	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3-STAGE EFFICIENCY	00000000000000000000000000000000000000
ENCY 74.0 DFGREES,F	8		TACHOMETER R.P.M.	11191.0 111990.0 111999.6 111999.6 111990.0 11900.0 11900.0 11900.0 11900.0 1000.0 1000.0 1000.0 1000.0 1000.0 0 1000.0 0 0 0	RAD./SEC.	11224 1224 1224 1224 1224 1224 1224 122
3-STAGE EFFICI	29.88 AT	SGER ANGLE 31.8	COUNTS	8139 9614 107431 107431 11114135 03903 03903 03918 0383	TORQUE FTLB.	111255 12555 125555 125555 125555 125555 1255555 125555 125555 125555 12555555
NL COMPRESSOR.	TRIC PRESSURE	STATOR STAC	PTIG. COUNTS	- - - - - - - - - - - - - -	PRESSURE RATIO	1.0015787 0015787 1.0020333447 1.0022177333447 1.00221273 1.00202856 1.00202856 1.00202856 1.0020283 1.0020033 1.0020283 1.0020020 1.002000000000000000000000000
. 3-STAGE AXIA	EARCME		PSTATIC.	00000000000000000000000000000000000000	PT0-PT16 L3./S0.FT.	шш444444444 шоч4о-п-о4що тото-п-о4що тото-п-о4що тото-по-о4що тото-по-о4 тото-по-по-по-по-по-по-по-по-по-по-по-по-по
C • N • E	TA FOR RUN 7	AGGER ANGLE 43	VELOCITY HEAD, COUNTS	03203445040341 0400344574033 050034445805034 050034446540341 040034446540341	MATA FOR RUN 7 VOLFLORATE CU.FT./SEC.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	INPUT CA	ACTCR S1	TEMP, DEG. F.	000024800m00440 11001110010 11101110110	CUTPUT C REFERRED FLOW RATE	44444 642040 642040 642040 642040 642040 64240 642400000000000000000000000000000000000

152.

	PRESSURE COEFFICIENT	00000000000000000000000000000000000000
	DEFLECTION COEFFICIENT	0.2289 0.2289 0.329953 0.329953 0.3219457 0.229601 0.229601 0.2296210000000000000000000000000000000000
COEFFICIENTS FCR RUN 7	3-STAGE EFFICIENCY	00000000000000000000000000000000000000
NON-DIMENSIONAL (FLOW COEFFICIENT	00000000000000000000000000000000000000

31.8°

П

Stator Stagger Angle

Run 7,

Output of Program ONRETA,

Table C-9.

WAVAL POSTCRADUALF SCHOOL TURBNPROPULSION LABORATORY

DEGREES, F. 77.2 O.N.K. 3-STAGE AXIAL COMPRESSOR, 3-STAGE EFFICIENCY STATOP STAGGER ANGLE 35.8 AT RARCMFTRIC PRESSURE 30.01 RCTOR STAGGER ANGLE 42.8 x INPUT DATA FOR RUN

TORQUEMETER POUNDS	25.80 27.05 28.27		3-STAGE EFFICIENCY	0.89788 0.92550 0.93184		E COEFFICIENT	0.2005 0.2226 0.2428
TACHOMETER R.P.M.	1192.0 1192.0 1191.5		OMFGA R AD./SEC.	124.826 124.826 124.773		ENT PRESSURI	
COUNTS	7550. 8384. 9122.		TORQUE FTLB.	107.238 112.475 117.504		CTION COEFFICIE	0.2233 0.2406 0.2605
PTIG, COUNTS	795. 710. 665.		PRESSURE RATIO	1.01465 1.01627 1.01770	σ	NCY DEFLE	
P STATIC. COUNTS	2915. 2723. 2550.		PTC-PTIG La./SQ.FT.	31.4C3 34.872 37.941	TENTS FOR RUN	-STAGE EFFICIE	0.9255 0.9255 0.9319
VFLCCITY HEAD, COUNTS	2124. 2016. 1882.	ATA FCK RUN 8	VOLFLORATE CU.FT./SFC.	383.855 373.969 361.569	NSIONAL CCEFFIC	FICIENT	65 119 38
TEMP, DFG. F.	74.9 75.1 76.0	GUTPUT D	REFERREC FLOW RATE	44.832 43.669 42.186	NON-DIME	ELCH CCER	000 ••00 ••00

Table C-10. Output of Program ONRETA, Run 8, Stator Stagger Angle = 35.8°

NAVAL POSICRADUATE SCHUOL TURBOPROPULSION LABORATORY

	• L		TORQUEMETER POUNDS	00000000000000000000000000000000000000		3-STAGE EFFICIENCY	0 0 0 0 0 0 0 0 0 0 0 0 0 0
ENCY	16.2 DFGREES.		TACHOMETER R.P.M.	0.0000000000000000000000000000000000000		DMEGA RAD./SEC.	1244-721 1244-7221 1244-7221 1244-7221 1244-7221 1244-7221 1244-7221 1244-7221 1244-7221 1244-7221 1224-7221 1224-7221 1224-7221
3-STAGE EFFICI	29.99 AT	GER ANGLE 35.8	DELP, COUNTS	10028 106655 1114293 11129405 1112009 1112009 9774 9128		TORQUE FTLB.	11225 1225 1225 1225 12255 12255 12255 12255 12255 12255 12255 1214 12255 12555 12555 12555 12555 125555 125555 125555 125555 125555 125555 125555 125555 125555 125555 125555 125555 1255555 1255555 1255555 1255555 1255555 1255555 12555555 1255555555
L COMPRESSOR,	RIC PRESSURE STATOR STAGO	STATOR STAG	PTIG. COUNTS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		PRESSURE RATIO	1.021947 1.022071 1.0221947 1.0222142 1.0222142 1.0220142 1.022144 1.0221444 1.0221444 1.0221444 1.02214444 1.02214444 1
3-STAGE AXIA	BAROME	R	P STATIC.	421030511 24103066725 24103066725 2020066728 202005110 2020510000000000		PTD-PTIG L3./SQ.FT.	44444444444 -4444444 -444444 -4444444 -4444444 -444444 -444444 -444444 -444444 -444444 -4444444 -44444444
	CATA FOR RUN 9	STAGGER ANGLE 42.	VELOCITY HEAD, COUNTS	10000000000000000000000000000000000000	DATA FOR RUN 9	VOLFL CRATE CU.FT./SEC.	80000000000000000000000000000000000000
	INPUT (NCTCR .	TEMF, DEG. F.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(UTPUT	REFERRED FLOW RATE	20020000000000000000000000000000000000

ADN-DIMENSIUNAL_CCEFFICIENIS FCR RUN 9

PRESSURE COEFFICIENT

DEFLECTION COEFFICIENT EFFICIENCY 3-STAGE CCEFFICIENT FLCW

Output of Program ONRETA, Run 9, Stator Stagger Angle = 35.8° Table C-11.

	DEGREES,F.
EFFI CIENCY	V 14.0
3-STAGE	79.88
3-STAGE AXIAL CHMPRESSOR.	BAROMETRIC PRESSURE
(• N • K •	DI VNd

INPUT CATA FOR

	1 2 2 2 2 2 2 2 2 2 2 2 2 2	E F I C I F I C I AG F F I C I AG 0 882 0 900 0 900 0 0 0	E COEFFICIENT 00.1850 00.22010 00.224333 00.224333 00.224333 00.224348 00.224348 00.224348 00.224348 00.224348 00.224348 00.22534 00.22534 00.22534 00.22534 00.22534 00.22534 00.22534 00.22544 00.25544 00.25544 00.25544 00.25544 00.25544 00.25544 00.25544 0000000000000000000000
	ACH ACH 11199000000000000000000000000000000000	R AD. / SFC. AD. / SFC. AD. / SFC. AD. / SFC. I244.930 I244.930 I244.6516 I2244.6516 I2244.6713 I2244.6713 I2244.8773 I2244.8773 I2244.8773 I224.8726 I224.930 I224.933 I2	NT PRESSUR
GGER ANGLE 39.R	C C C C C C C C C C C C C C	FT CLR. FT CLR. 98. 176 98. 176 1175 - 7175 11175 - 4775 11175 - 4775 11175 - 4775 11175 - 4775 11175 - 4775 11175 - 9215 11175 - 9215 - 9215 11175 - 9215 -	CTION CDEFFICIF 0.2096 0.2311 0.22487 0.2875 0.2875 0.31875 0.3182 0.3182 0.3182 0.3182 0.23475 0.23475 0.23475 0.23475 0.23475 0.23475 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.2275 0.22725 0.227555 0.227555 0.22755 0.2275555 0.22755555 0.22755555
STATOP STA	0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRESSURE PRE	10 VCY DEFLE
τ	7 20 20 20 20 20 20 20 20 20 20 20 20 20	 Ч Сами и стании стании	-STAGE FCK RUN FCK RUN FFFICIF FFFIC FFFICIF FFFICIF FFFICIF FFFIC FFFIC FFFIC FFFFIC FFFFIC FFFFIC FFFIC FFFIC FFFIC FFFIC FFFIC FFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFIC FFFFFIC FFFFFIC FFFFFIC FFFFFFFF
AGGER ANGLE 42.	HEAD, COUNTS 2015. 200. 2015.	ATA FUR RUN 10 VGLFL FRATE CU.FT./SFC. 3559.6548 3549.6548 3289.5553 3289.5553 3281.6548 2287.8855 2870.9872 2871.8555 2861.8555 2861.6451 2861.108 3211.108 3211.108 367.669 367.669	NS I UNAL COEFFIC FICIENT COEFFIC FICIENT 3- COEFFIC SCOE
FULLE S	Consection 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	ГГ Г 7 2 2 2 2 2 2 2 2 2 2 2 2 2	П С С С С С С С С С С С С С

155

Table C-12. Output of Program ONRETA, Run 10, Stator Stagger Angle = 39.8°

α
-
-
-
_
-
-
~
CT.
[''
~
m
-
a
_
~
_
_
5
_
-
2
-
0
-
0
9
-
CX.
-
0
\sim
_
\sim
المشيد
\sim
<u> </u>
-
-
harne
_
_
3
5
COL
CCL
HOGL
HOGL
HOGL
сносг
CHOCL
SCHOOL
SCHOOL
SCHOOL
SCHOOL
F SCHOOL
F SCHOGL
IF SCHOOL
TE SCHOGL
ATE SCHOOL
AIF SCHOGL
AIF SCHOGL
LATE SCHOOL
LATE SCHOOL
DLATE SCHOGL
DLATE SCHOGL
ADLAIF SCHOGL
ADLAIF SCHOGL
ADLATE SCHOGL
ADUATE SCHOGL
CHADLAIF SCHOGL
CHADLAIF SCHOGL
CHADLAIF SCHOGL
ICHADUAIF SCHOGL
ICHADLAIF SCHOGL
SICHADUAIF SCHOGL
SICHADLAIF SCHOOL
CSTCHADLAIF SCHOGL
CSICHADLAIF SCHOGL
CSTCHADLATE SCHOGL
PCSICHADLAIF SCHOGL
PESTCHADLATE SCHOGL
PCSTCHADLATE SCHOGL
PCSICHADLAIF SCHOGL
L PCSTCHADLAIF SCHOGL
L PCSTCHADLAIF SCHOGL
AL PESTCHADLATE SCHEGL
AL PCSICHADLAIF SCHOGL
AL PESTCHADLATE SCHOGL
VAL PESTCHADLATE SCHEEL
VAL PESTCHADLATE SCHOOL
AVAL PESTCHADLATE SCHOGL
AVAL PESTCHADLATE SCHOGL

	•	TORQUEMETER	00000000000000000000000000000000000000	25.52 25.52 3- STAGF	EFFICIENCY 0.899674 0.899655 0.92163	0.92629 0.91694 0.89602 0.86624 0.86624
FNCV	74.1 DFGREES,	TACHDMETER R.D.M.	00000000000000000000000000000000000000	1192.0 MFGA	R AD. / SEC. 125.635 125.035 124.933	124-878 124-878 124-878 124-878 124-878 124-878
3-STAGE EFFICI	29.91 AT GFR ANGLF 44.3	DELP,	11 10 10 10 10 10 10 10 10 10	19728. 9728. TORQUE	FTLB. 88.575 98.052 98.052	106 106 109 109 100 100 100 100 100 100 100 100
COMPRESSOR .	THIC PRESSURE STATOR STAG	PTIG.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	298. 298. PRESSURE	RATTO 1.014311 1.01587 1.01587	1.01886 1.02009 1.02082 1.02142 1.021698
3-STAGE AXIAL	BARMMET	PSTATIC.	2000 400 400 400 400 400 400 400	1849. 1849. PTC-PTIG	LB./SQ.FT. 22.017 32.596 33.919	24448 202020 202020 202020 202020 202020 202020
0 • N • K •	ATA FOR RUN 11 TAGGER ANGLE 42.	VELOCITY HEAD. COUNTS		1439. Data fok run 11 Volficrate	CU.FT./SEC. 355.552 344.351 334.351 334.351	100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000
	RETCK S	TEMP,	0-40mr0-404	KEFERRED	FLOW RATE 41.757 39.5512 37.7534	20000000000000000000000000000000000000

.826 0.87290 878 0.87290 878 0.91513 878 0.91513 .826 0.94161		PRESSURE COEFFICI	0.1765	0.2351	0.2710	C . 2895 C . 2298	0.2814	0.2705	
110.937 124 110.729 124 108.692 124 106.490 124		TION COEFFICIENT	0.1968 0.2142	0.2538	0.2956	0.3345	0.3336 0.3164	0.2956 0.2715	
1.02143 1.02075 1.01994 1.01893	11	ENCY DEFLEC							
45.815 44.359 42.617 462	FICIENTS FCR RUN	3-STAGE EFFICI	0.8567	C. 9263 C. 9263	0.9169 0.8960	0.8662 0.6766	0.3895	C.9151 C.9416	
265-544 278-955 293-163 310-981	DIMENSIONAL CCEF	CEFFICIENT		.4741 .4533	0.4331			.4325	
31.052 32.667 34.346 36.543	NON-6	FLCN							

ENT

44.3°

11

Stator Stagger Angle

Run 11,

Output of Program ONRETA,

G-13.

Table

- 10	-	
	-	6
	- 3	•
_	~	~

ł

APPENDIX D

DETAILS OF PREDICTION PROGRAM

This Appendix contains details concerning AXCO3 which may be of interest to a limited number of readers. Table D-1 is a listing of the main program and the seven subroutines. Section D-1 is a description of the method of inserting data. Table D-2 is a sample of program output. The rewrite of input data, a sample of interstage data, and a sample summary of one case are included. Tables D-3 through D-16 are the summary printouts of the cases which were compared to measured performance of the machine. Table D-17 is a printout of program CHECK which verified the errors in the polynomials of subroutines THEORY and CASCAD.

D-1 Input Data

There is no limit to the number of cases which may be considered, since data are read in prior to execution for each case, and output printed prior to considering the next case. The executive routine reads input data and prints it before computation begins. The input data consists of thirteen cards per case.

Card 1:	NUM	case number (arbitrary)
(17,	GAM	ratio of specific heats
4 F 7.3)	RN	referred speed $(rpm/\sqrt{o_R})$
	WREM	initial referred flow rate
		$(1bm\sqrt{O_R}/sec psia)$
	DW	referred flow rate increment
		$(1bm\sqrt{\sigma_R}/sec psia)$

Card 2:	LMAX	number of stages (3)
(17,	ZETAI	loss coefficient of inlet duct
5f7.3)		(assumed 0.0)
	ZIGV	loss coefficient of inlet guide vanes
		(assumed 0.05)
	EGV	efficiency of exit guide vanes (assumed 0.85)
	ETD	efficiency of diffuser (assumed 1.0)
	EEX	efficiency of exit (assumed 1.0)
Card 3:	DIN	inlet pipe diameter, in.
(3F7.3,	DAV	average blade diameter, in.
4F7.1,	DOU	outlet pipe diameter, in.
3F7.3)	AEA	annulus area ahead of IGV, in. ²
	AIGV	annulus area after IGV, in. ²
	AGV	annulus area after EGV, in. ²
	ADI	diffuser exit area, in. ²
	ALE	inlet guide vane exit angle, degrees
	SMAX	maximum limit, $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$, set by Fig. 29
	SMI	minimum limit, $(\dot{\iota} - \dot{\iota}_{10})/\epsilon_{10}$, set by Fig. 29
Card 4:	AAA	an array of annulus areas after rotor one,
(10F7.3)		stator one,stator LMAX, in. ²
Card 5:	BH	an array of blade heights of rotor one
(10F7.3)		stator LMAX, in.
Card 6:	BLOCK	an array of blockage factors for rotor one
(10F7.3)		stator LMAX (assumed 1.0)
Card 7:	WDO	an array of work done factors for stage one
(10F7.3)		stage LMAX (assumed 1.0)

Card 8:	BLDR	number of blades in the row
(Rotor	CAMR	camber angle, degrees
data)	STAGR	stagger angle, degrees
(9F7.3)	SHR	shape correction factor, (1.0)
	THR	thickness to chord ratio
	CHR	blade chord length, in.
	DIAR	mean blade diameter, in.
	DER	tip clearance, in
	CDR	minimum profile drag coefficient (assumed
		various)
Card 9:	BLDS	number of blades in the row
(Stator	CAMS	camber angle, degrees
data)	STAGS	stagger angle, degrees
(9 F 7.3)	SHS	shape correction factor (1.0)
	THS	thickness to chord ratio
	CHS	blade chord length, in.
	DIAS	blade mean diameter, in.
	DES	tip clearance, in.
	CDS	minimum profile drag coefficient (assumed
		various)

Cards 10 and 12 are duplicates of 8

Cards 11 and 13 are duplicates of 9

130		
08		
00		
4	X X X X X X X X X X X X X X X X X X X	
723	HHR S S MA AND AND AND AND AND AND AND AND AND AN	
2 #		
ш	A A A A A A A A A A A A A A A A A A A	
DAI	S S S S S S S S S S S S S S S S S S S	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
NIV		
W	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	THE LESS BRANNERS STREET	
	AAUONSTOCHARACTURE STOCHARACTURE	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0	C-0000 NoX020200000000000000000000000000000000	
	$ \begin{array}{c} \mathbb{Z} \mathbb{Z} \times Z$	
•		
E<	7 7 7 7 3 3 5 5 6 C	
ر د		
>		
Z		
TR4	о ирм иноовалоининствени - 00000000000000000000000000000000000	
D K		

PAGE 000

30	A A A A A A A A A A A A A A A A A A A
00/08/	K2) E) H, DF, VA1, AL T2, PS2, M, NC
DATE = 67224	G,C,XXX,PIN,XXY,XX2),Y AM,RAG,C,TSIG,PSIG,PTIG,V RAG,C,TSIG,PSIG,PTIG,V 36,C,TSIG,PSIG,PTIG,V 2,BLD,CAM,SIA, SH,TH,C
MAIN	<pre>LGCK(2,LMAX) (66A%-[,)(64%+FXP1 74*53.346%+FXP1 (53.346/32.174) (53.346/32.174) 940100000000000000000000000000000000000</pre>
0 MOD 0	
IV G LEVEL	w 4 №
FORTRAN	00000000000000000000000000000000000000

.30	m 000000000000000000000000000000000000
/ 8ù/	S E X
00	A S C C C C C C C C C C C C C C C C C C
= 67224	STA G; SH, TH, CH, E S3, PS 3, PT3, K, NO , PS EG, XXX, PTEG, , C, PS EX, XXX, PTEG, 778.16)
ATE	АА * 733. * 76, С
7 <u>G</u>	-, SMAX, SMI, AL3, VL -, SMAX, SMI, AL3, VL 53, EGV, AGV, GAM, RA 53, EGV, AGV, GAM, RA 55EG, ETD, ADI, GAM, RA 55EG, ETD, ADI, GAM, RA
MAI	LL) CDR (WRE, DD), BLOK 64,0111, K 9,111, K 9,111, K 11, K
C C	
MOI	
•0	ALALATINGA "ACOINTOLARACARACARCARCARACARACARACARACARACARACA
LEVEL	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
0	
NV	
FORTR	

H
ш
-
A
0

000 J		
PAGE		

	00000000000000000000000000000000000000	A 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	91000000000000000000000000000000000000
06/80/0	20000000000000000000000000000000000000	20000000000000000000000000000000000000	20000000000000000000000000000000000000
00	PARCE FF66 3/ 9/0 FF66 3/ 9/0 FF66 3/ 9/0 FF00 FF00 FF00 FF00 FF00 FF00 FF00 F	RATIO FFICIENO	ANCE/26)
7224	3) HEAMAA HINTERA ANGLEA LLINGERS ANGLEZI) 3) 4) ATTE ATTO	PERFORM 1 1 1 1 1 1 1 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
ATE = 5	3, ETAST 3, ETAST 5, ETAST 5, ETAST 7, 5, 15 8, 00, 7, 15 8, 00, 7, 15 8, 00, 7, 15 8, 00, 7, 15 1, 1,	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RESSOR
<u>_</u>	AB AB AB AB AB AB AB AB AB AB	UN NUT OF	IAL COMP 357.3// REAS// REGEFGA FACGEFGA FACGEFAC FACGEFAC FACTOR BSTATOR BSTATOR BSTATOR
z	TT, AM, FT AM, F	PRESSURE PRESSURE PRESSURE FF15.5 PRESSURE FF15.5 PRESSURE FF15.5 PRESSURE FF15.5 PRESSURE FF15.5 PRESSURE FF15.5 PRESSURE FF15.5 FF15.	L A T ED AX 7 1 1 2 5 7 7 3 5 7 7 3 5 7 7 3 5 7 7 4 5 7 7 7 4 5 7 7 7 7 5 7
IAM	W R E W R E W R E F E X A B A B A A B A A B A A S A A S T 3 A A S T 3 • • 3 3 • 3 3 • • 3 3 • 5 3 • • 3 3 • 5 3 • • 3 3 • 5 3 • • 3 3 • 5 3 • • 1 0 0 7 • 6 7 8 C 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 0 7 8 0 0 7 8 S 1 0 1 1 0 7 8 0 0 7 8 S 1 0 1 1 0 7 8 0 0 7 8 S 1 0 1 1 0 7 8 0 0 7 8 S 1 0 1 1 0 7 8 0 0 7 8 S 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	XX, 3 SHCALCU ARDO 21/14/ ARDO 21/14/ CCARD 3///14/ XX, 255HCARD 3///114/ XX, 46HCCARD 7/ XX, 47HCCARD 7/ XX,
¢	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01 01 01 01 01 01 01 01 01 01 01 01 01 0	
0. MOD	3344004002300444444 84740014038400000000000000000 100140014480000000000000000000000000000	FFOCRMAT FFORMAT FFORMAT FFORMAT FFORMAT FFORMAT FFORMAT	A A A A A A A A A A A A A A
LEVEL	ФЛ4401 000000 14 47474 15 77777	700 7008 710 712 712 712 712	20 20 20 20 20 20 20 20 20 20 20 20 20 2
C			
CRTRAN I	00000000000000000000000000000000000000	001510 001522 001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0001552 0000000000	01 5 01 5 001 5 0001 5 001 5 000

00/98/30	F. DVERALL10000182 A = F6.3,9X20000182	STAGGER AN31000182	4000182	51000182	70000182 80000182	90000182	1 APK(1), 51 12000182 13000182	00000183 00000184 00000184	
0ATE = 67224	CONDITIONS)) COMPESSOR PERFORMANC SPEED = F7.4, 9X, 7HGAMM	+F5.2,15X, 23HSTATOR					II + PUCULII + BLEIALII + S		
NAIN	IGV ,2F6.2,F7.2,6X,F6.2) -6.2,2X,25H(TOTAL OUTLET -34X,53HCALCULATED AXIAL CUN 0.14,9X,16HREFERED	22HROTOR STAGGER ANGLE =	5) (NUM, RN, GAM, UAV) 5) (R STAG, SSTAG)		N N N		ULTELOW(I), KATIU(I), UELA(
0, 400 0	FORMAT(6H FORMAT(6X21 FORMAT(1H1 DATA//8H DATA//8H P.35HAVER/6H	DEDRMAT (20X	WRITE(6,76) WRITE(6,76)	WRITE(6,71 NNN=MMM-1	D0 911 1=1 X(I)= FLOW	Y(I) = RATI(XY(I) = 0ETA)	NKI (E (D, / 1 (LAETA(I))	GR TR 3002 RETURN END	
IV G LEVEL	765 765	766(2000				116	3000	
FORTRAN	0169 0170 0171	0172	0173	0175	0177	01 79	1910	0182 0183 0184	

LEVEL	0, MOD 0	ROTOR	ATE = 672	24 0	0/08/30	PAG
	SUBROUTINE RCTOR(W, TSI, TTI, PSI, PTI, CD,	DD, BLOK, A2, HR, WO, BL B, EXP1, RN, L, SMA, SMI	GA ST SH	TH, CH, DE, VAI 52, TT2, P52, M	* AL3 + 00000185	
c calé	ULATES CONDITIONS A UERN*DD*3.14159/720 WUI=U-VAI*TAN(AL3)	T ROTOR DISCHARGE			10000186 00000187 00000188 00000188	
	BEL=AIAN(WU1/VA1) ANG=BE1*57.29578 SO=CH*8L(13.14159\$0	()	DETA ACTA		00000191	
	CALL CASCAD STARTS DFACT, DFMAX, N, NCASS 60 TO (400, 405, 405)	TARD, DFSTAR, BETA, CA,	ASTAR, ANG	SO, SMA, SMI,	ALG, R, 00000194 000000194 000000195	
t 0	AK2-VAI BE2=ALG/57.29578 BE2=ATAN((1400)*TA ALG=BE2*57.29578	N(BE1)+W0*TAN(BE2))			000001919100000000000000000000000000000	
401	KK=1 CALL ETACAL(CD,R,BF W1=VA1/COS(BE1) W2=XX/COS(BE2) D=B*(W1*W1-W2*W2)	1,BE2,VA1,XX,S0,HR,E	JE, CH, FT AR	~	000002020	
	TSZ=TSI+D	-XX*TAN(BE2)) TSI)**EXPI			00000206	
	KA=53。346 VA2=W*TS2*RA/(A2*BL XX=VA2	0K*PS2)			00000209	
450	60 10 (450,450,450, KK=KK+1	450,450,403),KK			00000213	
403 404	GU 10 401 WRITE(6,404)(L,TS2, DFACT,DFMAX) FORMAT(3H R,I3,2F6	PS2,VA2,W1,W2,U,ETAF .2,F7.2,3F6.2,F6.3,2	*, ANG, ALG,	CD.R.STARI.C 3.F8.3.2F11.	FSTAR,0000215 00000215 00000216 3.F10.00000216	
405	3) M=N END END				00000218 00000219 00000220 00000221	

Listing of Program AXCO3 (cont. Table D-1.

0001

LEVEL

ۍ 2

FORTRAN

0001

ں

0029

3/30	R R R R R R R R R R R R R R	000000000000000000000000000000000000000	0000002398 0000002399 0000002399 0000002499 0000002499 0000002399 0000002399 0000002399 0000002399 0000002399 0000002443	00000244500000244500000024450000002445000000244500000024450000024450000002445000000244500000000	AR 00000251 000000251 000000252	00000258
00/00	CH, DE, VA2, BI				K,STARI,DFST/ 3.3,2F11.3,F	
TE = 67224	CA, ST, SH, TH, S3, PS3, PT3, H ETA, ASTAR, DF STAR, AMG, SD		,CH,FTAS)		AMG , AK G , CD , F 6 . 2 . 2F 6 . 3 , F8	
DA	ARI, WD, ALI, VA3, T II SCHARGE ARI, STARD, B RRI, STARD, B	TAN(AL3))	XX, S0, HS, DE	1 	• V3• U• ETAS•	
STATOR	<pre>% 00 % 00 % 00 % 00 % 00 % 00 % 00 % 0</pre>	5),N 5),N fan(al 2)+WO*	1L2,AL3,VA2, √TS2)**EXP1	/3/TS3)**EXP 3LOK*PS3) .650.650.60	8, PS3, VA3, V2 6, 2, F7, 2, 3F	
C	FINE STATOR CCONDITIONS CCONDI	1600,605,60 1600,605,60 101(1,-40)*1 101(1,-40)*1	COS(AL2) COS(AL2) COS(AL3) COS(AL3) CS(AL3) CS(AL3) CS(AL3) CS(AL3) CS(AL3) CS(AL3) CS(AL3) CS(AL3) CS(AL3) CS(AL3) CS(AL2) CS	-+U 3+(1.+8+V3+V 5465 53+RA/(A3+F	501 501 504)(L,TS 54AX) 3H S,I3,2F	
. MCD	ALLURATING SOURATING SOURATING ALLUZENATING ALLUZENATING ALLUZENATING ALLUZENATING ALLUZENATING ALLUZENATING ALLUZENATING ALLUZENATING		2000 1000 1000 1000 1000 1000 1000 1000	∧		ETURN ND
LEVEL 0	C CALCUTS	00 00 00 00 00	207204+ 09	- L K > X U	650 K 603 K 604 F 13	605 K R R
C <						
IN						
FORTR	00000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	24 m 51 0 0000000000000000000000000000000000	0028	0030 0031 0032

00/08/30	00000259	THE 00000260 00000261 00000262	00000264	30E-02*00000267 F-04*A*00000268 00000268	0 F 14200000270	*TH**3-00000273 00000273	2/200000 00000276	-0.36870000278 +5-0.3600000278 04+4+4*000000280 *4*5*5+00000281	00000284	S=0.1190000285 S=0.1190000286 -03*A*A00000288 A*A*S*S00000289 A*A*S*S0000289	0 F 17200000292	TH**3 00000294	962000000000000000000000000000000000000	581E-030000298 57353E-0300000298 A*S*S*S*S00000299 S-0.9920000301 S-0.9920000301	00000303 00000304 10000304 20000304
DATE = 67224	[,SD,BET,AS,DFS]	COMPRESSOR CASCADES USING	ALPHA I FIG 137	1 * S + 0 • 1 09 6 3E - 0 1 * S * S - 0 • 4 2 9 3 5 + 0 • 2 7 9 2 3 E - 0 4 * A * A - 0 • 6 4 3 0 1	VS THICKNESS-CHORD RATIC	l18.09991*TH*TH+429.53472*	AND ALPHA 1 FIG 138	854*S*S+0。57160E-01*S*S*S- 2*A*S*S-0。55334E-03*A*S*S* 243E-04*A*A*S*S-0。22671E-(5*A*A*A*S-0。49472E-06*A*A	ALPHA I FIG 161	+687*5*5+0°58557E-01*5*5* 11*A*5*5+0°11478E-01*A*5* +528E-03*A*A*5*5+0°28823E- 14*A*A*A*5+3°25862E-04*A*	VS THICKNESS-CHORD RATIO	<pre>).722724*TH*TH-85.664637*1</pre>	AND ALPHA 1 FIG 168	90*S*S-0。28879*S*S*S*0。36 *S-0。13993E-02*A*S*S*S-0。 03*A*A*S*S+0。74911E-04*A* 03*A*A*S*S+3。74911E-04*A*	
0 THEORY	INE THEORY(TH, SH, CA, ST, SO, S)	MINIMUM LCSS CONDITIONS OF (IEBLEIN - NACA SP-36 CHAR	INCIDENCE VS SOLIDITY AND	• 5)=0°96195E-02-0°21961E-0 03E-01*A*S-0°34503E-02*A*S* 2138E-04*A*A*S*S	ORRECTION FACTOR (INCIDENCE)	H)=0.03472777+17.891945*TH-1 11*TH**4	R N (INCIDENCE) VS SOLIDITY	• S) =- C。11890+0。21192*S-0。178 -0.76207E-04*A*S+0。18208E-02 *A*A+C。66620E-04*A*A*S+0。163 •72311E-07*A*A*A-0。54986E-06 E-06*A*A*A*S*S*S	DEVIATION VS SOLIDITY AND	<pre> S) = - C • C1 7896 + 0 • 10058 * S - 0 • 1 A + 0 • 65167 E - 01 * A * S - 0 • 4 + 822 E - 0 3* A * A + 0 • 66468 E - 03 * A * A * S - 0 • 9 0 • 672 69 E - 05 * A * A * S + S - 0 6 E - 05 * A * A * S * S * S </pre>	ORRECTION FACTOR (DEVIATION	H)=0.1169385+2.6167113*TH+7(R M (DEVIATION) VS SOLIDITY	<pre> S)=1.06850-1.68830*S+1.156 185E-C2*A*S+0.36235E-02*A*S 0.11329E-03*A*A*S-0.19416E-0 7E-06*A*A*A-0.79239E-06*A*A* A*A*A*S*S*S</pre>	+ 0.5*CA GBF(TH)
-EVEL 0, MOD	SUBROUT	CALCULATES METHOD OF L	ZERO-CAMBER	FIGAF(A 1A+0.854 2A*S+0.3	THICKNESS CI	FIGBF(T) 1685.430	SLOPE FACTO	FIGCF(A 13E-02*A- 2825E-04 35*55-04 40.37471	ZERO-CAMBER	FIGDF(A 187E-01*1 24947E-0 3*S*S*5+(4-0) 3*S*S*5+(4-0)	THICKNESS CO	FIGEF(T)	SLOPE FACTO	FIGGF(A 1*4-0.19 205*A*A+(3-0.1618 418E-06*	BET=ST CTHK=FI(SIP=2.0
۲ د د														, (
FORTRAN I	0001			0002		0003		0004		0005		0006		0007	00008 0010 0010

PAGE COOL

00/08/30	00000000000000000000000000000000000000
0ATE = 57224	WITHIN 0.02 DFGREE
C, MOD 0 THEORY	A=BET+SIP DENCE=FIGAF(A,SO) SLOPN=FIGCF(A,SO) SLOPN=FIGCF(A,SO) SLOPN=FIGCF(A,SO) SIDENCE*SH*CTHK + SLOPN*CA CHEC=ABCS (SI-SIP) IF(CHEC-0.02)2C3,203,202 SIDESI SIDESI CTU2201 CTU2201 SIDESI CTU2201 SIDESI CTU2201 SIDESI S
IV G LEVEL	201 C 202 203
FORTRAN	00000000000000000000000000000000000000

/30	<pre></pre>	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
00/08	A, R, DFF, DFMA) NG US ING 0.6 TO 1.4 5174E+00*5*5	A*A*A*S*S*A*A A*A*A*S*S*A*A A*A*A*S*S*A*A A*A*A*S*S*A*A
DATE = 67224	4, 50, 5M4, 5M1, A 4PRESSOR BLADI 4 1 FTG 177 3LIDITIES FROM 558E+01*5*5- 3 558E+01*5*5- 3	×S12163E-04*
	:S, BET, CA, AS, A DATA FOR COM :P-36 CHAP 6 ITY AND ALPHA JERATED FOR SC #52-216926-0135 *52-216926-0135	141E-05*14444 *X**2 *X**2 *2.8807456*X*
CASCAL	ASCAD(SI,SD,DF EE PERFORMANCE EBLEIN (NACA 7DD)* VS SOLIC PCLYNOMIAL GEN 81324E+00178 A+.18322E-01*A	-06*44*4*4+0866 *5*5*5 AS, SC) 1) *5L0PD 5 80 2, 303, 303 3, 303 3, 303 3, 303 3, 303 6, 03 5 0, 3250 *X+1.750 0, 3250 *X+1.750 0, 3250 *X+1.750 0, 3250 *X+1.750 0, 3250 *X+1.750
. 0, MOD 0	SUBROUTINE C IN,NCASE) CULATES CASCA METHOD OF LI DPE FACTOR (CI AUTION THIS OFIGHF(A,S)=	SL 0P 0 SL
G LEVEL	COCCOCC	C 0 0 0 0 0 0 0 0 0 0 0 0 0
> I <		
FORTRAN	0002	460 00000000000000000000000000000000000

PAGE 0001

/30	000000033575 000000033575 000000033575 000000033575 000000033575 000000033575 000000033575 000000033575 0000000033575 0000000033575 00000000033575 0000000000
00/08	(H/(CT*H)
7224	H, ETA) .018 *
DATE = 6	E, SO, H, DE, C (R, 1) + + 2) (COS(ALE))+
ETACAL	TACAL (CD, R, ALI, ALE, VI, V IENCY OF ROTOR OR STATO I) LE) LAE)/2.)**2+((VI+VE)/2 VU) 4*CL*CH/H+.25*CL*DE/(H* 1+VE) /(1.+E*T)
G LEVEL U, MOD C	C CALCULATES EFFIC AI=VI*TAN(AL AE =VE*TAN(AL AE =VE*TAN(AL D=AI-AE VU= SORT(SO CU= SORT(SO E=C0*R/CL+00 T=(AI+AE)/(SO ETA=(IE/I) END END
FORTRAN IV	00000000000000000000000000000000000000

00/08/30

WE PREX(W, TTI, PTI, Z, A, GAM, RAG, C, TSE, PSE, PTE, VE) RESSURE DROP IN CHANNEL FOR FLOW WITH FRICTION [.+Z*(GAM-1.)) DATE = 67224*GAM/(GAM-1.))* (PRA**EX1-PRA**FX2))
C4),KM
C2,1C6,103 C CALCULATES PRESURE CROP IN CHANN EN=GAM/(1.+2*(GAM-1.)) CHANN EX1=2./EN EX2=(EN+1.)/EN EX3=(FN+1.)/EN PH1=WFSORT (TT1)*RAG/(PT1*A) PRA=1. 100 PH2=SORT (771)*RAG/(PT1*A) PRA=1. 100 PH2=SORT (72.106.103 101 F(PH2-PH1)1C2.106.103 102 PRA=1. 103 KM=2 103 KM=2 103 KM=2 103 KM=2 103 KM=2 103 KM=2 104 F(PH2-PH1)1C6.106.105 105 PRA=PRA+0001 103 KM=2 105 PRA=PRA+0001 105 F(PT1*PRA*EX3 105 F(PT1*PRA*F(PT1*PRA*FX3) 105 F(PT1*PRA*FX3) 105 F(PT1*FX3) 105 F(P \mathbf{C} MOD •0 G LEVEL J FORTRAN IV 0001

.30	00000392	000000394	00000395	00000397	000003988	000000400	000000401		00000404	00000405	00000000000	000000401	000000408	0000000000000	00000411	00000412	00000413	00000414	
r0/08/																			
0ATE = 57224	LOB ELOU LIPS ELETENTSE)	TOR FLOW WITH FAIGHON				[/TSI)*PRA**EX1-PRA**EX2))													
PRCN	E PRCJ(W, TTI, TSI, PSI, F, A	(164M*(1E))	.)/EN	T (TSI)*RAG/(PSI*A)		((2.*6AM/(GAM-1.))*((TT)	1,504,5KM 21502,504,503	001			2)5C6,5C6,5C5	00005	15	RÅ**((EN-1.)/EN)	C*(III-ISE))	TSE) ** (GAM/(GAM-1.))	SE		
0 00	DUTIN SUTIN			W*SQK	-	SORT	02 / 0 HI-DH	PRA+	0 500		Hd-IH	PRA		TSI*P	QRT (/111)	PRE*P	z	
о в	SUBR		EX2=	= I Hd	777 71 11	PH2=		PRA=	GU T	X M = 2	IF(P	PRA=	н = СС В С В С	TSE=	VE = S	PRE=			
LEVEL	ر ر ۲۰ ر					500	105	502		503	504	505	50.6	2					
1 6																			
FORTRAN	1000	0002	0000	0000	2000	0008		0011	0012	0013	0014	0015	01100	0018	0019	00200	0021	200	1
CALCULATED AXIAL CCMPRESSOR PERFORMANCE INPUT DATA OF RUN NO. 1

CARD 1

1 1.400 52.474 40.000 0.500

CARD 2

3 0.0 0.050 C.850 1.000 1.000

CARD 3

36.000 28.800 36.000 651.0 651.0 651.0 1017.0 19.500 0.400 -0.510

CARD 4 ANNULUS AREAS

651.0C 651.00 651.00 651.0C 651.0C 651.0C

CARD 5 BLADE HEIGHTS

7.200 7.200 7.200 7.200 7.200 7.200

CARD 6 BLOCKAGE FACTORS

1.000 1.000 1.000 1.000 1.000 1.000

CARD 7 WORK-DONE FACTORS

1.000 1.000 1.000

Table D-2. Sample Output of Program AXCO3

0.020 0.020 0.020 0.020 0.020 0.020 30.000 20.320 42.800 1.000 0.100 2.600 28.800 0.037 2.600 28.800 0.037 0.020 0.020 0.037 0.020 2.600 28.800 2.600 28.800 2.600 28.800 2.600 28.800 30.000 20.320 42.800 1.000 0.100 30.000 20.320 42.800 1.000 0.100 32.000 29.980 27.800 1.000 0.100 32.000 29.980 27.800 1.000 0.100 32.000 29.980 27.800 1.000 0.100 2 m ~ m ----STAGE STAGE STAGE STAGE STAGE STAGE STATOR DATA STATOR DATA STATOR DATA ROTOR CATA ROTOR DATA ROTOR DATA CARD 1C ა CARD 12 CARD 11 CARD 13 80 CARD CARD

Table D-2. Sample Output of Program AXCO3 (cont.)

	41	z				
	6•59	L I NG C T I O	65 65 65 77 77			
	H 0	STAL	14.2 23.1 14.2 23.1 14.2 14.2 23.1 23.1			
	RATI	0 ND				
	ΤΥ	ECTI	• 141 • 450 • 054 • 054 • 253			
	EL OC	DEFL	12112			
	AL V	LI ON	5 5 5 5 5 5 5 5 5 5			
	IPHEF	FLECT	11.4. 18.54 11.4 11.4 11.4 18.54	۲		
	PER	E DE		T AGE C I EN	58	(
	RAGE	R ENC D ENC	017 673 613 673 673 673	3-S EFFI	06*0	(con
ANCE	AVE	R EF E I NC I		DI		AXCO3
FORM		UTI O	153 0036 044	IGE RAT	9	or am
R PER	0.4	A A A		SSURE	0193	f Pro
ESSOF	1.400 DAT/	MIN		PRE	1,	out o
CMPRI	A = TAGE	OUT	1.21 2.57 0.79 2.62 2.64 2.64	NC Y	\$	e Out
AL C	GAMM TERS	ET LE A	35 4 11 4 89 2 89 2	LADI	. 889	Samo 1
AXI	Z I	ANG	54. 51. 53. 41. 41.	EFF	0	~
ATED		EFF10	- 904 - 905 - 907 - 907	ENT	0.0	ble D
ALCUL	4740	TOR		PONER	.0706	Ц
J.	=52.	C KO		COEL	0	
	EEC	VELO	1 1	C۲		
	U SP	LET	U 1 C C C C C C C C C C C C C C C C C C	RALL CIEN	136	
	ERRE		D D D D D D D D D D D D D D D D D D D	CVE EFFI	0.8	
	REF	A X I A V EL C		w	21	
		ILET RES.	00000000000000000000000000000000000000	SSUR	0173	
	-	PER PER	220200000000000000000000000000000000000	PR6 R/	1.	
	•	TEM	90000000000000000	ATE	0	
	D Z	U MOM	N N M M H H H	RRR	00.5	
	5	3L RC	II R D D	E E E E E	46	

VELOCITY RATIO = 6.5941			
ERAGE PERIPHERAL	ANGLE = 27.80	3-STAGE EFFICIENCY	0.8992 0.90592 0.90592 0.90592 0.90592 0.90592 0.90598 0.90588 0.88988 0.88746 0.88746 0.88746 0.88746 0.88746 0.88746 0.88746 0.88746 0.88772 0.8772 0.77720 0.77720 0.77720 0.77720 0.77720 0.77720 0.77720000000000
1-400 AV	STATOR STAGGER	PRE SSURE RATIO	1.02056 1.02056 1.020556 1.001936 1.001936 1.001936 1.001965 1.0013664 1.0013651 1.0013651 1.001365 1.001365 1.001365 1.001365 1.001365 1.001055 1.000055 1.
GAMMA =		BLADING	-2- Sample Out
=52.4740	GLE = 42.80	CCEFFICTENT	0 0 0 0 0 0 0 0 0 0 0 0 0 0
EFEARED SPEEC	ICR STAGGER AN	OVERALL EFFICIENCY	00000000000000000000000000000000000000
K	RCI	PRESSURE	90000000000000000000000000000000000000
AUN NC.		REFERREC FLCM RATE	44444444444400000000000000000000000000

. .

	VELOCITY RATIO = 6.4905				
1	VERALL DATA Erage peripheral	ANGLE = 23.90	3-STAGE EFFICIENCY	00000000000000000000000000000000000000	
	t PERFORMANCE, OV 400 AVE	STATOR STAGGER A	3-STAGE PRESSURE RATIO	C2175 1.02153 1.02153 1.02153 1.02153 1.021534 1.021534 1.01971 1.01875 1.01855 1.01855 1.01855 1.01855 1.018555 1.018555 1.018555 1.018555 1.018555 1.0185555 1.0185555 1.0185555 1.01855555 1.018555555 1.01855555555555555555555555555555555555	
	NL COMPRESSOR GAMMA = 1		BL ADING EFFICIENCY	C 9430 C 9430 C 94333 C 94333 C 94333 C 9440 C 9440 C 94405 C 94455 C 94455 C 94455 C 94455 C 94455 C 94555 C 945555 C 945555 C 94555 C 945555 C 94555 C 945555 C 945555 C 945555 C 945555 C 945555 C 945555 C 945555 C 945555 C 945555 C 945555555 C 94555555555555555555555555555555555555	
	alculated axia =51.6500	GLE = 43.80	CCEFFICIENT	Output of Prog	
	C FERRED SPEEC	CR STAGGER AN	OVFRALL EFFICIENCY	Table D-3.	
	З. Е	RCT	PRESSURE RATIC	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-0.0220 0022001001001001001001000000000000	
	KUN NE. 11		REFERREC FLCW RATE	177	

E PERIPHERAL VELUCITY RATIO = 6.490 F = 23.80	
ANGLE	
L.477 A STAT(F STAGGFR	
ALADI NG	
x61 F = 43. 40 101 P = 43. 40 101 P = 43. 40	00000000000000000000000000000000000000
С.« STA3666 // 	- - - - - - - - - - - - - -
P R F S S S C R F	00000000000000000000000000000000000000
tê ê ê k n fi t	44444444444444440000000000000000000000

4L VELNÇITY RATIN = 6.4905				i .					3				1		the same that was in the same the	1	
DVERALL DATA VFRAGF PFRIPHFR	AMGLE = 23.80	3-STAGE EFFICIENCY	r.9273 C.9290 0.9309	0.9318 0.9328 0.9334	0.9341 0.9343	0000 0000 0000 0000	0.0000 0.00000 0.000000	0.9320	0.9259	6.9204 0.9171 0.9139	0.90 900 900 900 900 900 900 900 900	0000 0000 0000 0000		38			
PERFORMANCE, C .400 AV	STATOP STAGGER	2-STAGE PRE RATIN	1. (2110 1. (2111 1. (2108	1.02087 1.02087 1.02070	1.02043 1.02021	1.01953	1.01878 1.01830 1.01782	1.01681 1.01681 1.01632	1.01534	1.01431 1.01381 1.(1331	1.01281 1.01227	1.01126 1.01375		e 13, C _{Dmin} = 0.00			
AL CUMPRESSOR GAMMA = 1		BLADING EFFICIENCY	0.9158 0.9171 0.9188	0.9193 0.9202 0.9202 0.0202		0.9194	0.9134 0.9174	0.9153 0.9113 0.9092	0.9038	0.8953 0.8911 0.8869	0.8813 0.8741 3.8741	0.8529 0.8529		gram AXCO3, Cas			
ALCULATED AXI =51.4660	.GLE = 43.80	PENER CCEFFICTENT	C.€€4781 D.€C€451 D.€C€851 D.€C€909	0.066556 0.06683 0.07705	0.06990 0.06990 0.66990	0.0003	0.06787 0.06689 0.76589	0.06352 0.06251 0.06251	0.00019	0.05761 0.05535 0.05504	0.052330			. Output of Pro			
C CFRRENEEC	ICH STAGGER AN	GVERALL FFFICTENCY		 	00 			0.8049 9049 7998	0.7818	9.1590 0.7505 0.7347		0.6531 0.6531		Table D-5			
2	א כ ו	PRESSUPE RATIC	1.01952 1.01952 1.01941	1.01928 1.01883	1.01827 1.01827	1.01722	1.01672 1.01615 1.01565	1.01452	1.01244	1.01179 1.01129 1.01069	1.00962	1.00859		Ì			
ארע יו 1		XERENHEC FLCM FATE	41	4 4 4 ww4 	1444 100 100 100 100		444 ••••• •••••	4444 0000	500 1000 1000	51.50 52.00 52.00 52.00 50 50 50 50 50 50 50 50 50 50 50 50 5		500 50 50 50 50 50 50 50 50 50					

t

44110 = 6.4905							
AAL VELOCITY						1	
ERAGE PERIPHE	ANGLE = 27.80	3-STAGF EFFICIENCY	00000000000000000000000000000000000000		and i		
1.407 م۷	STATCH STAGGER	PRFSSURE RATID	11-11-11-11-11-11-11-11-11-11-11-11-11-	21, C _{Dmin} = 0.000			
GANMA =		AL ADI NG	00000000000000000000000000000000000000	um AXCO3, Case			
= 51 • 6505	16LE = 43.8C	PONER CCEFFICIENT	03000000000000000000000000000000000000	Output of Progre			
FERREC SPEET	CH STAGGER AN	-)vFKALL ⊒rfICIENCY	00000000000000000000000000000000000000	Table D-6.	1		ł
L ~	108	PRESSURF RATIC	00000000000000000000000000000000000000				ł
201 11 . 21		KEFERNAFC FLGN HATE	444444444444444440000000 	:			

į.

And a second sec	L VELNCITY RATIO = 6.4905								1
	VERALL DATA Epage peripherai	ANGLE = 27.80	3-STAGE EFFICIENCV	00000000000000000000000000000000000000					
	R PERFORMANCE, DV L.400 AVI	STATOR STAGGER	3-STAGE PRESSURE RATIO	11-00000000000000000000000000000000000	22, C _{Dmin} = 0.006				
	L COMPRESSO		BLADING FFFICIENCY	00000000000000000000000000000000000000	n AXCO3, Case :				
ł	CALCULATED AXIA =51.65∩C	GLE = 43.4€	POWER CCFFFICIENT	00000000000000000000000000000000000000	Output of Progra	1			
	FERRED SPEEC	CH STAGGER AN	JVEPALL LFFICIENCY	00000000000000000000000000000000000000	Table D-7.				
	ш Т	жС1	PRESSURE RATIC	10000000000000000000000000000000000000					
	RLA MO. 23		REFERHEL FLCW HATE	4444444444444440000000 	•		vir domine		

L VELPCITY RATIO = 6.4905						
VERALL DATA ERAGE PERIPHERA	ANGLE = 27.80	3-STAGE EFFICTENCY	00000000000000000000000000000000000000			
PFRFARMANCE, D לרח AV	STATCR STAGGER	3-STAGE DRFSSURE RATIC	00000000000000000000000000000000000000	. ^C Dmin = 0.008		
AL COVPRESSOR		⁹ L ADI NG EFFI CIENCY	00000000000000000000000000000000000000	AXCO3, Case 23		
CALCULATEU AXI =51.65°C	NGLE = 43.40	POWER CCEFFICIENT		utput of Program		
FERED SPEEL	CK STAGCEE A	USERALL FFFICIENCY	00000000000000000000000000000000000000	Table D-8. 0		
لب 2: 7	A.C.T	PHESSUNE HATIC				
46 NI . 13		АЕЕЕКЕЕС Р.С. К. АТЕ	44444444444444440000000 	4	ľ	

CITY RATIN = 6.4905				
IVERALL DATA Erage peripheral velo	ANGLE = 31.80	3-STAGF EFFICIENCY	00000000000000000000000000000000000000	
SOR PERFORMANCE, D = 1.400 AV	STATCE STAGGER	Y PRESSURE RATIO	e 31, CD 292 1.013963 1.013963 1.013963 1.013963 1.013635 1.01555 1.013655 1.013655 1.013655 1.013655 1.013655 1.013655 1.01292 1.01292	
AL CJUPRES		EFFICIENC	н ч ч ч ч ч ч ч ч ч ч ч ч ч	
CALCULATEC AXI	\CIE = 43.9f	CCFFFICIENT	Output of Program 0.0000555555 0.000055555555 0.00005555555 0.00005555555 0.00005555555 0.000055555555 0.00005555555 0.00005555555 0.00005555555 0.00005555555 0.00005555555 0.00005555555 0.00005555555 0.00005555555 0.0000555555 0.00005555555 0.00005555555 0.0000555555 0.0000555555 0.000055555 0.0000555555 0.0000555555 0.000055555 0.000055555 0.00005555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.0005555 0.00055555 0.00055555 0.00055555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.0005555 0.000555 0.00055555 0.00055555 0.0005555 0.0005555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.00055555 0.000555555 0.000555555 0.0005555555 0.000555555555 0.0005555555555	
LHERREL SPEEL	TCP STAGCER P	UVERALL EFFCIENCY	Table D-9.	
¥	С Ж	PRESSURE RATIC	11111111111111111111111111111111111111	
3 YUN NG. 3		KEFEXXYC FLON XATT	444444444444444 	

VELOCITY RATIC = 6.4905						
OVFRALL DATA VFRAGE PERIPHERAL	ANGLE = 31.80	3-STAGE EFFICIFNCY	00000000000000000000000000000000000000			
AR PERFORMANCE, 1.400	STATCR STAGGER	3-STAGE PRESSURE RATIO	11111111111111111111111111111111111111	se 32, C _{Dmin} = 0.006		
AXIAL COMPFESS GAMMA =	ć	NT EFFICIENCY	0000-000000000000000000000000000000000	rogram AXCO3, Ca		
CALCULATED / FC =51.65°C	/NGLE = 43.8'	Y CCEFFICIE	00000000000000000000000000000000000000	10. Output of P		
ACFEXAFC SPF	keter stagger	E OVERALL	8426286000000000000000000000000000000000	Table D-		
۰.		FEC PRESSUR				
KLN N		REF F C N N	ທິດທິດ ຄິດທີ່ມີທີ່ວີທີ່ວີທີ່ດີທີ່ມີ 			

0 1 1 10 10 1

	RATIO = 6.4905					
- The samples with the	ERALL DATA Rage peripheral velocity	NGLE = 31.80	3-STAGE EFFICIENCY	0.9335 0.9335 0.9335 0.9336 0.93366 0.93326 0.93326 0.9326 0.9326 00		
	SUR PERFORMANCF, UV = 1.400 AVE	STATER STAGGER A	A PAFSURE RATIO	11-010100080000000000000000000000000000	Case 33, C _{Dmin} 0.008	
	IAL COMPRESS SAMMA =		BL ADING FFF CI FNC	00000000000000000000000000000000000000	rogram AXC03,	Ľ.
	CALCULATED AX : =51.4500	NGLE = 43.80	CCEFFICIEN	COOOOCOOOCOCOO 2000000000000000000000000	11. Output of P	
	FERRO SPEED	ICA STAGGER A	·)VFRALL EFFICIENCY	00000000000000000000000000000000000000	Table D-	
	3 Rt	ΥU	PRFSSLAE RATIC	11001111001156669		
	KUN NI . 3		REFERAEL FLCN RATE	20000000000000000000000000000000000000	Đ	

VELOCITY RATIO = 6.4905									-	
OVERALL DATA Verage Peripheral	ANGLE = 35.80	3-STAGF EFFICIENCY	0.9599 0.95999 0.95999 0.95590 0.95599 0.95590 0.95590 0.95590 0.95590 0.95590 0.95590 0.95590 0.95590 0.95590 0.95590 0.95590 0.955900 0.955900 0.955900 0.955900 0.95590000000000	0						
R PERFURMANCE, 1 1.400 A	STATOR STAGGER	3-STAGF PRESURE RATIO	1.01763 1.01763 1.01763 1.01763 1.01630 1.01630 1.015383 1.01430 1.01483	ase 41, C _{Dmin} 0.000						
AL COMPRESSO GAMMA =		BL ADING EFFICIENCY	0.9475 0.9375 0.93375 0.93375 0.933456 0.933456 0.933456 0.933456	ogram AXCO3, C						
CALCULATEC AXI =51.65rr	NGLE = 43.80	CCEFFICIENT	00000000000000000000000000000000000000	12. Output of Pr						
FERRED SPLFE	CK STAGGER A	GVERALL EFFICIENCY	00000000000000000000000000000000000000	Table D.		1				
ά α	RCTI	PRESSURE	1.015882 1.015882 1.015882 1.015388 1.013389 1.013389 1.01233	1				-		
KLN N(. 41		REFERREL FLCW FATE	1	, 86				1		

VELNCITY RATIO = 6.4905							
IVERALL DATA 'ERAGE PERIPHERAL	ANGLE = 35.80	3-STAGE EFFICIENCY	0.000000000000000000000000000000000000		-		
R PERFORMANCE, O 1.400 AV	STATCR STAGGER	PRE SSURE RATIC	1.01545 1.015685 1.015685 1.015685 1.015593 1.015453 1.015453 1.015453 1.015453 1.015453 1.015453 1.015453 1.015453 1.015455 1.015455 1.015455 1.0156453 1.0156453 1.0156453 1.0156455 1.015655 1.015655 1.015655 1.0156555 1.0156555 1.01565555 1.015655555 1.01565555555555555555555555555555555555	e 42, C _{Dmin} 0.006			
AL COMPRESSO GAMMA =		FFICIFNCY	00000000000000000000000000000000000000	ram AXCO3, Case			
∆LCULATEC AXI. =51.€5rC	GLE = 42.80	POMER CCEFFICIENT	000000000 000000000 000000000 00000000	Output of Progr			
C Fł⊰keľ SPFEC	CR STAGGFR AN	UVEPALL EFFICIENCY	000000000 	Table D-13.		-	
с, т.	אנת	PRESSURE RATIC	11.00155577 0011350555777 00113505555777 001135055555555555555555555555555555555		1	1	
KUN NL . 4		REFEATEC FLCw + ATF	44444444 -0000044000 000000000000000000	ě			

L VELOCITY RATIO = 6.4905								
 OVERALL DATA AVERAGE PERIPHERA 	FR ANGLE = 35.80	3-STAGE 10 EFFICIENCY	00000000000000000000000000000000000000	0.008				
SOR PERFORMANCE = 1.401	STATCR STAGG	Y PRESSURE RAT	1.01754 1.01754 1.016273 1.015873 1.015881 1.014582 1.014782 1.014782 1.014782	Case 43, C _{Dmin} = (
AXIAL CUMPRES GAMMA	U	NT EFFICIENC	00000000000000000000000000000000000000	Program AXC03,				
CALCULATED Ff =51.6500	ANCLF = 43.8	Y CCEPFICIE	00000000000000000000000000000000000000	L.]4. Output of				
461FARED SPE	RETCH STAGGER	E JVERALL	00000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 100000000	Table I				
43		C PRESSURE			!			
RLN NL.		KEFEK FLCK F F	444444444 	1	1			

KESSOR PERFORMANCE, DVERALL DATA 1a = 1.400 average peripheral velocity ratio = 6.4905	STATCP STAGGER ANGLF = 39.90	ING PRESSURE PATIO EFFICIENCY 31 1.C1683 0.8976		, Cases 51, 52, and 53, All C _{Dmin}				
KUN AC. 51 REFERED SPEEC =51.6577 GAM	KCTCR STANGER ANGLE = 42.80	REFERHEC PRESSURE UVERALL FLOW FAIL RATIC EFFICIENCY COEFFICIENT FFEICI 41.500 1.01515 J.8Cdl 0.C5555 0.870	. 189	Table D-15. Output of Frogram AXCO3				

	/ELOCITY RATIN = 6.4905									-	
ę	R PERFORMANCE, OVERALL DATA 1.400 average pepipheral	STATCR STAGGER ANGLE = 44.30	PRFSSURE RATIN EFFICIENCY	1.01583 0.8976		61, 62, and 63, All Chmin					
	CALCULATED AXIAL COMPRESSON SPEEE =51.6520 GAMMA = 1	GGER ANGLE = 43°80	ALL TEVCY CCEFFICIENT FFFICIENCY	81 0.05595 0.8781		e D-16. Output of Program AXCO3, Cases					
	RUN N. 61 ALFERRED	RETCR STA	REFERNED PRESSURE OVER FLC* FATE RATIC EFFIC	41.500 1.01515 0.80	190	Tabl		and a second			

Table D-17. Program CHECK, Listing and Output.

READ(5,700)(ADENCE(I),I=1,15)

0006

2825E-04*A*A+0.66620E-04*A*A*S+0.16243E-04*A*A*S*S-0.22671E-04*A*A*00000280 FIGDF(A,S)=-0.017896+0.1058*S-0.14687*S*S+0.58557E-01*S*S*S-0.1190000286 24947E-03*A*A+0.66468E-03*A*A*S-0.94528E-03*A*A*S+0.28823E-03*A*A00000288 3*S*S*S+0.67269E-05*A*A*A-0.17987E-04*A*A*A*A*S+0.25862E-04*A*A*A*S*S0000289 FIGGF(A,S)=1.06850-1.68830*S+1.15690*S*S-0.28879*S*S+0.36581E-030000298 l*A-0.19185E-02*A*S+0.36235E-02*A*S*S-0.13993E-02*A*S*S*S-0.57353E-00000299 205*4*A+0.11329E-03*A*A*S-0.19416E-03*A*A*S*S+0.74911E-04*A*S*S*S0000300 0F1GHF(A*S)=.81324E+00-.17818E+01*S+.13558E+01*S*S-.35174E+00*S*S*S0000326 218174E-03*A*A-。83518E-03*A*A*S+。10421E-02*A*A*S*S-。38235E-03*A*A*S00000328 s o A+0.85403E-01*A*S-0.34503E-02*A*S*S+0.27923E-04*A*A-0.64301E-04*A*00000268 FIGCF(A,S)=-0.11890+0.21192*S-0.17854*S*S+0.57160E-01*S*S*S-0.368700000278 00000290 00000296 10000325 I- <00846E-02*A+
 18322E-01*A*S 21692E-01*A*S*S+
 76075E-02*A*S*S*S*S+
 00000327 20000328 00000266 FIGAF(A,S)=0.96195E-02- 0.2196IE-01*S+0.10963E-01*S*S-0.42930E-02*0000267 00000269 00000276 [3E-U2*A-0。76207E-04*A*S+0.18208E-U2*A*S*S-0。55334E-03*A*S*S*S-0。3600000279 35*5*5~0°72311E-07*A*A*O°54986E-06*A*A*A*O°49472E-06*A*A*S*5*0000281 00000283 00000285 187E-01*A+0.e5167E-01*A*S-0.e44822E-01*A*S*S+0.11478E-01*A*S*S*S-0.20000287 00000295 00000302 00000323 00000325 00000264 00000265 00000275 00000277 00000282 00000284 00000297 3-0.16187E-06*A*A*A-0.79239E-06*A*A*A*A*S+0.22558E-05*A*A*A*S*S-0.9920000301 00000324 20000325 5 t m v 16/30/48 THIS PRUGRAM CHECKS THE ACCURACY WITH WHICH THE POLYNOMIALS IN AXCOM4 10PN(15), USLOPN(15), ADEVAT(15), COEVAT(15), ODEVAT(15), ASLOPM(15), CSL JUIMENSIUN BETA(15), ADENCe(15), CJENCE(15), DDENCE(15), ASLGPN(15), CSL 20PM(15),0SL0PM(15),ASL0PU(15),CSL0PU(15),0SL0PU(15),PDENCE(15),PSL CAUTION THIS POLYNOMIAL GENERATED FOR SOLIDITIES FROM 0.6 TO 1.4 FIG 168 FIG 138 FIG 161 FIG 177 DATE = 67160FIG 137 SLOPE FACTOR N (INCIDENCE) VS SOLIDITY AND ALPHA 1 SLOPE FACTOR M (DEVIATION) VS SOLIDITY AND ALPHA 1 ZERO-CAMBER INCIDENCE VS SOLIDITY AND ALPHA 1 C ZERD-CAMBER DEVIATION VS SOLIDITY AND ALPHA I C SLOPE FACTOR (DI/DD)* VS SOLIDITY AND ALPHA 1 3UPN(15), PDEVAT(15), PSLUPM(15), PSLOPD(15) KEPRESENT THE FIGURES IN NACA SP-36 READ(5,700)(BETA(I),I=1,15) NIAM 4-0.77546E-05*A*A*A*S*S*S 2A*S+() . 32138E-04*A*A*S*S 40.37471E-U6*A*A*A*S*S*S 418E-06*A*A*A*S*S*S 421E-05*A*A*A*S*S*S G LEVEL 0, MOD 0 ں ں υU ں ں J ں J S C ں C J S S U) FURINAN IV 1000 0001 0005 0003 0005 0000 0004 191

PAGE 0001

PAGE 0002		· .
3	7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1112 1113 1113 1115 1115 1116 1117 1116 1117 1116 1116 1116 1117 1116 1117 1116 1116 1116 1117 1116 1115 1125 1125 1125 1125 1125 1125 1125 1125 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 1225 125 1
16/30/4		
DATE = 67160		
MAIN	(1),1=1,15 (1),1=1,15 (1),1=1,15 (1),1=1,15	
	00)(ASLUPN 00)(ASLUPN 00)(ASLUPN 00)(ASLUPN (ASLUPD (ASLUPD) (ASLU	CTAT CTAT
C, VÜU U	A A A A A B C A A C C A A C C A A C C A A C C A A C C A A C C A A C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C A C C C B C C C B C C C B C C C B C C C C C <td>CDEVATION DT=ATCEVAN DT=ATCEVAN DDEVAT(1) PT=100.*C PUEVAT(1) SLGP#=FIG CSLOPM(1) PM=AN-CLOPM(1)</td>	CDEVATION DT=ATCEVAN DT=ATCEVAN DDEVAT(1) PT=100.*C PUEVAT(1) SLGP#=FIG CSLOPM(1) PM=AN-CLOPM(1)
V V LEVEL		N m
FLKINAL I	00015 00015 00015 00015 00015 00025 0005 0005 000005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 0005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 000000	0033 0033 00332 00333 00334 00338 00038 00000000

Table D-17. Program CHECK, Listing and Output (cont.)

PAGE																																
	132 133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	
16/30/48	[]				[]			[]				[]				[]		6 WITH VA		ANGLE, DE	X,19HACTU			CULATED F		EES,5X,16	- DEVIAT					
04TE = 67160	DENCE(I), DDENCE(I), PDENCE(SLOPN(I), OSLOPN(I), PSLOPN(CJEVAT(I), ODEVAT(I), PDEVAT(SLOPM(I), DSLOPM(I), PSLOPM(SLOPD(1),0SLOPD(1),PSLOPD(ACTUAL VALUES IN NASA SP-3	11HSOLIDITY = .F3.1//)	IDENCE VERSUS ANGLE/3X,14H	(, 20HCALCULATED INCIDENCE, 2	-KKUR/)	VERSUS ANGLE/)	I3HACTUAL FACTOR, 5X, 17HCAL),5X,13HPERCENT ERROR/)	JS ANGLE//3X,14HANGLE, DEGR	VIED DEVIATION, 2X, 19HACTUAL		M VERSUS ANGLE/)	/DD VERSUS ANGLE/)		
MAIN	a(1),ADENCE(1),C				A(I), ASLUPN(I), C			A(I),ADEVAT(I),C				A(I),ASLUPM(I),C				A(I), ASLUPD(I), C		4HCOMPARISON DF	BY AXCOM2//43X,	HZERC CAMBER INC	JAL INCIDENCE, 2X	, 5X, 13HPERCENT E	HSLOPE FACTOR N	GLE, DEGREES,6X,	JAL - CALCULATED	HDEVIATION VERSU	JN, 2X, 20HCALCULA	VI EKRDR/)	27HSLOPE FACTOR	HSLUPE FACTOR DI	•	
0.400.0	UO 4 I=1,15 wRITE(6,757)8E1/	wRITL(6,752)	MRITE(6,753)	DC 5 1=1,15	ARITE(6,757)BET/	WRITE(6,754)	00 6 1=1,15	WRITE(6,757)BET/	«RITL(6,755)	MRITE(6,753)	DC 7 1=1,15	WKITE (0, 757) BET/	WRITE(6,756)	"RITE(6,753)	00 3 1=1,15	ARITE(0,757)BET/	FORMAT(8F6.3)	JFURMAT(1H1,9X,7	ILUES CALCULATED	0F0RMAT(//33X,34	IGREES,5X,16HACTU	ZAL - CALCULATED	FURMAI(//36X,27	JFCRMAT(3X,14HAN)	1 AC TOR, 3X, 19HACT(DFDRMAT(//39X,22H	IHACTUAL DEVIATIO	21CN, 5X, 13HPERCEN	FCRMAT(1H1,36X,	FCRMAI(//39X,32h	FGRMAI(5F20.10)	END
1 IV G LEVEL	4				5			6				1				30	100	1500		151			242	1530		754(•	155	156	151	
FCAINA	0057 0056	9500	UCEU	0061	0002	0003	6664	0005	0066	0061	0060	0065	00010	0071	0072	0073	91.00	0015		0076			0077	0078		0079			0080	0061	0082	0083

Table D-17. Program CHECK, Listing and Output (cont.)

CCMPARISON OF ACTUAL VALUES IN NASA SP-36 WITH VALUES CALCULATED BY AXCOM2 SOLIDITY = 0.8

4

Δ

4

	ZERG CAME	BER INCIDENCE VERSUS	ANGLE	
ANGLE, DEGREES	ACTUAL INCIDENCE CA	ALCULATED INCIDENCE	ACTUAL - CALCULATED	PERCENT ERROR
0.0	0.0	-0.0009329878	0.0009329878	0.0932987332
5.0000000000	0.329999833	0.3080989718	0.0219010115	6.6366682053
10.000000000	0.6799999475	0.6169836521	0.0630162954	9.2671022415
15.0000000000	0.9899999499	0.9257200956	0.0642798543	6.4929141998
20.000000000	1.3099994059	1.2343072891	0.0756921768	5.7780303955
5.00000C0000	1.6199998856	1.5427494049	0.0772504807	4.7685480118
30.0000000000	1.929993515	1.8510446548	0.0789546967	4.0909175873
35.0000000000	2.2299995422	2.1591939926	0.0708055496	3.1751365662
40.0000000000	2.5499992371	2.4671907425	0.0828084946	3.2473926544
45.000000000000	2.8299999237	2.7750444412	0.0549554825	1.9418897629
50.00000000000	3.1199998856	3.0827503204	0.0372495651	1.1938962936
55.000000000	3.3899993896	3.3903064728	-0.0003070831	-0.0090584978
60.0000000000	3.6199996856	3.6977157593	-0.0777158737	-2.1468467712
55.0000000000	3.6249999237	4.0049800873	-0.1749801636	-4.5686721802
70.000000000	4.0099992752	4.3120946884	-0.3020954132	-7.5335502625

SLOPE FACTOR N VERSUS ANGLE

NULE, DEGREES	ACTUAL FACTOR	CALCULATED FACTOR	ACTUAL - CALCULATED	PERCENT ERROR
0.0	-0.0389999971	-0.0343636572	-0.0046363398	11.8880500793
5.0000000000	-0.0499999970	-0.0483931080	-0.0016068891	3.2137775421
10.0000000000	-0.0609999970	-0.0621372499	0.0011372529	-1.8643474579
15.0000000000	-0.0739999413	-0.0760737062	0.0020737648	-2.8023862839
20.0000000000	-0.0579999995	-0.0906807184	0.0026807189	-3.0462713242
25.0000000000	-0.1039999723	-0.1064355373	0.0024355650	-2.3418893814
:0.0000000000	-0.1209999919	-0.1238162518	0.0028162599	-2.3274869919
35.0000000000	-J.1439999728	-0.1433003545	0.0023003817	-1.6314764023
40.000000000	-0.1619999409	-0.1653655767	0.0033656359	-2.0775537491
~p.0000000000	-0.1859595855	-0.1904897094	0.0044897199	-2.4138278961
50.000000000	-0.2119999528	-0.2191501260	0.0071501732	-3.3727235794
55.000000000	-0.24099999967	-0.2518250346	0.0108250380	-4.4917144775
CO.0000000000	-0.2769999504	-0.2889920473	0.0119920969	-4.3292751312
65.0000000000	-0.3209999800	-0.3311289549	0.0101289749	-3.1554431915
70.0000000000	-0.3759999871	-0.3787130713	0.0027130842	-0.7215649486

OEVIATION VERSUS ANGLE

ANULE, DEUNCES	ACTUAL DEVIATION	CALCULATED DEVIATION	ACTUAL - DEVIATION,	PERCENT ERROR
J.U	0.0	-0.0014475845	0.0014475845	0.1447584033
0.00000000000	0.0599999987	0.0814747810	-0.0214747824	-35.7912902832
10.0000000000	0.1299999952	0.1593298316	-0.0293298364	-22.5614013672
15.0000000000	U.2099999785	0.2358062267	-0.0258062482	-12.2886896133
/00000000000000000000000000000000000000	0.2999999523	0.3145923018	-0.0145923495	-4.8641147614
23.0000000000	J. 35499995762	0.3993784785	0.0006214976	0.1553744078
30000000000	0.5099999905	0.4938524365	0.0161475539	3.1661853790
35.000000000	0.6299999952	0.6017042994	0.0282956958	4.4913787842
+6.000000000	0.7539999905	0.7266232967	0.0333766937	4.3916702271
45.000000000	J. 3999999762	0.8722926378	0.0277073383	3.0785923004
000000000000000000000000000000000000000	1.05999994655	1.0424118042	0.0175876617	1.6592140198
55.00000000	1.250000000	1.2406597137	0.0093402863	0.7472229004
00.0000000000	1.4799995422	1.4707336426	0.0092658997	0.6260744929
65.0000000000	1.750000000	1.7363204956	0.0136795044	0.7816859484
10.000000000	2.0699996948	2.0411033630	0.0288963318	1.3959579468

Table D- 17. Program CHECK, Listing and Output (cont.)

.

ACTUAL FACTOR CALCULATED FACTOR ACTUAL - CALCULATED PERCENT ERKOR ANGLE, DEGREES 0.3099999428 0.3104162812 -0.0004163384 0.0 -0.1343027353 0.3119999766 0.3125761747 -0.0005761981 5.00000000000 -0.1846788526 0.3149999976 10.0000000000 0.3147908449 0.0002091527 0.0663976669 0.3169999719 0.3171648979 -0.0001649261 15.0000000000 0.0520271473 20.00000000000 0.3209999800 0.3198031187 0.0011968613 0.3728539944 0.3239999413 0.3228106499 0.0011892915 0.3670653105 25,00000000000 0.3279999495 0.3262923956 0.0017075539 0.5205957294 30.0000000000 0.3329999447 0.3303530812 0.0026468635 35.0000000000 0.7948539853 0.3379999995 0.3350979686 0.0029020309 0.8585889935 40.00000000000 0.3439999819 0.3406320214 0.0033679605 45.0000000000 0.9790582657 0.0029398799 50.00000000000 0.3499999642 0.3470600843 0.8399657607 55.00000000000 0.3569999933 0.3544869423 0.0025130510 0.7039358616 60.0000000000 0.3649999499 0.3630179167 0.0019820333 0.5430228710 65.0000000000 0.3750000000 0.3727575541 0.0022424459 0.5979855657 0.3879999518 10.00000000000 0.3838108182 0.0041891336 1.0796728134 SLOPE FACTOR D1/DD VERSUS ANGLE/ CALCULATED FACTOR ACTUAL - CALCULATED ANGLE, LLGREES ACTUAL FACTOR PERCENT ERROR 0.0769999623 0.0754218698 0.0015780926 0.0 2.0494718552 0.0789999962 5.0000000000 0.0780347586 0.0009652376 1.2218189240 0.0809999704 0.0802936554 10.0000000000 0.0007063150 0.8719941378 0.0829999447 0.0826053023 15.0000000000 0.0003946424 0.4754729867 0.0859999657 20.0000000000 0.0853770375 0.0006229281 0.7243353128 0.0899999738 25.000000000 0.0890154839 0.0009844899 1.0938777924 0.0939999819 30.0000000000 0.0939274430 0.0000725389 0.0771690011 35.0000000000 0.1019999981 0.1005203128 0.0014796853 1.4506711960 40.00000000000 0.1109999418 0.1092003584 0.0017995834 1.6212463379 45.0000000000 0.1209999919 0.1203768849 0.0006231070 0.5149644613 50.00000000000 0.1319999695 0.1344547272 -0.0024547577 -1.8596649170 0.1499999762 55.00000000000 0.1518397331 -0.0018397570 -1.2265043259 0.1719999909 60.00000000000 0.1729413271 -0.0009413362 -0.5472884774 0.1979999542 0.1981655955 65.0000000000 -0.0001656413 -0.0836572051 10.00000000000 0.2269999981 0.2279177904 -0.0009177923 -0.4043137431

SLUPE FACTOR M VERSUS ANGLE

Table D-17. Program CHECK, Listing and Output (cont.)

APPENDIX E

PROPOSED DESIGN OF AN IMPROVED INLET DUCT

The present inlet duct is deficient because of the shape of its bellmouth, because of the small velocities that occur in it during operation which make accurate determination of volume flow rates impossible, and because it has no provision to eliminate effects of atmospheric gusts or winds.

The entrance bellmouth should have more gradual changes in wall curvature to eliminate local separations at the entrance to the cylindrical duct. It was stated earlier that the velocity head in this duct with 36 in. diameter is about 0.6 in. of water, a value too small for accurate measurements. To avoid large fluctuations of the read-out of the Texas Instruments pressure gauge, for small variation in flow rate, the velocity head should be increased to about 6 in. of water or 33 lb/ft², at a volume flow rate of 360 ft³/sec, giving a response at the instrument of about 8000 counts. For an assumed incompressible flow with a mass density Q i of 0.002378 lb sec²/ ft⁴, and a velocity head q₁₁ of 33 lb/ft², the velocity V₁ in the measuring plane of the inlet duct would have to be

$$V_{i} = \sqrt{\frac{2 q_{i1}}{Q_{i}}} \qquad (ft/sec) \qquad (6)$$

Hence the required flow area is $360/166 = 2.16 \text{ ft}^2$, corresponding to a circular area with 19.9 in. diameter. Because of the small pressure rise of the compressor it is necessary to convert the velocity head at the measuring plane into static pressure rise by arranging an optimum diffuser between this section and the inlet

pipe to the compressor that has a diameter of 36 in. Test data of Reference 11 show that the included diffuser angle should be 8° for the present application. Larger diffuser angles produce separation with associated flow instabilities, and smaller angles require ducts with increased lengths where the boundary layer growth is excessive and reduces pressure recovery. For a diffuser angle of 8° the length L of the diffuser is

$$L = \frac{36 - 19.9}{2 \tan 4^{\circ}} = 116 \text{ in.}$$

Figure E-1 shows the design of the proposed inlet duct. A well designed bellmouth from a diameter of 48 in. to the throat of 19.9 in. requires an axial length of about 26 in., giving a total length of the duct of 116 + 26 = 142 in. Ahead of the bellmouth inlet a structure will be attached to support several layers of fine mesh screen to eliminate flow disturbances by gusts in the surrounding atmosphere. The whole duct is mounted on a trolley which can be rolled onto the apron outside the test cell to permit simple attachment to and removal from the presently installed cylindrical inlet duct. It is recommended also that an additional honeycomb flow straightener be installed at the entrance of this duct.

The bellmouth and the diffuser could be molded out of plastics, reinforced by fiberglass, by using a wooden template which is split at the smallest diameter.

FIG. E-I PROPOSED IMPROVED INLET DUCT

INITIAL DISTRIBUTION LIST

		Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	20
2.	Library Naval Postgraduate School Monterey, California 93940	2
3.	Commander, Naval Air Systems Command Navy Department Washington, D. C. 20360	1
4.	Commander, Naval Ship Systems Command Navy Department Washington, D. C. 20360	1
5.	Dr. O. H. Johnson Naval Air Systems Command (Code 330 B) Navy Department Washington, D. C. 20360	1
6.	Capt. A. Bodnaruk, USN Naval Ship Systems Command (Code 6140) Navy Department Washington, D. C. 20360	1
7.	Office of Naval Research (Power Branch) Attn: Mr. J. K. Patton, Jr. Navy Department Washington, D. C. 20360	1
8.	Chairman, Department of Aeronautics Naval Postgraduate School Monterey, California 93940	3
9.	Professor M. H. Vavra Department of Aeronautics Naval Postgraduate School Monterey, California 93940	3
10.	Lt. B. C. Marshall Air Antisubmarine Squadron 35 Fleet Post Office San Francisco, California 96601	4

3 ·

UNCLASSIFIED			
Security Classification			
DOCU (Security classification of title, body of abetra	IMENT CONTROL DATA - Ra	&D entered when the overall report in	e cleesified)
1. ORIGINATING ACTIVITY (Corporate author)		24. REPORT SECURITY CL	ASSIFICATION
Naval Postgraduate School		UNCLASSIFIED	
Monterey, California 93940		25. GROUP	
3. REPORT TITLE			
EFFECT OF STATOR BLADE ORIEN COMPRESSOR	TATION ON THE PERFORMA	ANCE OF AN AXIAL FLO	WC
4. DESCRIPTIVE NOTES (Type of report and inclusion Thesis	ve datee)		
Marshall, Bruce C., Lieutena	nt, U. S. Navy		
September 1967	199	11	
Se. CONTRACT OR GRANT NO.	94. ORIGINATOR'S R	REPORT NUMBER(S)	
b. PROJECT NO.			
a. Undernited dist	95. OTHER REPORT	NO(S) (Any other numbers that	may be accigned
10. AVAILABILITY/LIMITATION NOTICES This document is subject to preim nationals may be made	special export contro	is and each transmit	ttal to
Postgraduate School.	e ours when bring abb	Latar of the Matar	
11. SUPPL EMENTARY NOTES	12. SPONSORING MIL Commander, Department Washington	Naval Air Systems (of the Navy , D. C. 20360	Command
13. ABSTRACT	L		

A mean streamline analysis of the effect of stator blade orientation on the performance of an axial flow compressor was performed by means of a computer program. Measurements were made on a 3-stage axial flow compressor at the Naval Postgraduate School at six stator stagger angles between 23.8° and 44.3° for a fixed orientation of the rotor blades. Maximum efficiency and pressure ratio were measured at a stator stagger angle of 31.8° . Results at other blade settings showed that by varying stator stagger angle with flow rate optimum efficiencies and pressure ratios can be achieved over a wide range of operating conditions.

The results of the analysis were compared with the measured results. Suggestions are made for improving the manner of adapting cascade test data to performance predictions.

By applying a non-dimensional deflection coefficient it could be shown that minimum work input corresponded to maximum efficiency.

The test compressor has a tip diameter of 36 in. and a hub/tip ratio of 0.6. The blading tested is of the free-vortex type with a design degree of reaction of 0.5. Tip speed was about 185 ft/sec.

UNCLASSIFIED

14. KEY WORDS	LINH	< A	LINI	кв	LINI	< c
	ROLE	wт	ROLE	WT	ROLE	WT
compressor						
compressor performance						
axial flow						
variable stator						
stator blade orientation						
DD 1 NOV 65 1473 (BACK)		UNCLAS	SIFIED			

